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Abstract— An intrusion detection system (IDS) identifies 

whether the network traffic behavior is normal or abnormal 

or identifies the attack types. Recently, deep learning has 

emerged as a successful approach in IDSs, having a high 

accuracy rate with its distinctive learning mechanism.  The 

most common operational network intrusion detection 

systems are signature based systems. These systems consist of 

a database of attack signatures. Human experts produce the 

attack signatures by manually analyzing the attack data. The 

monitored network traffic is matched against this database to 

detect malicious activities. Producing attack signatures is a 

time consuming and manually intensive task. 

Recently, machine learning techniques have been applied to 

build predictive models for the detection of network attacks. 

Unlike signature based methods, which need manual analysis 

by human experts to extract attack patterns, machine learning 

algorithms are able to automatically extract similarities and 

patterns in the network data.  

We found that using LSTM-RNN classifiers with the optimal 

feature set improves intrusion detection. The performance of 

the IDS was analyzed by calculating the accuracy, recall, 

precision, f-score, and confusion matrix. The NSL-KDD 

dataset was used to analyze the performances of the 

classifiers. An LSTM-RNN was used to classify the NSL-KDD 

datasets into binary (normal and abnormal) and multi-class 

(Normal, DoS, Probing, U2R, and R2L) sets. The results 

indicate that applying the GA increases the classification 

accuracy of LSTM-RNN in both binary and multi-class 

classification. The results of the LSTM-RNN classifier were 

also compared with the results using a support vector machine 

(SVM) and random forest (RF). For multi-class classification, 

the classification accuracy of LSTM-RNN with the GA model 

is much higher than SVM and RF. For binary classification, 

the classification accuracy of LSTM-RNN is similar to that of 

RF and higher than that of SVM. 
  
Keywords—Machine Learning, Algorithms, Network Attacks, 

Genetic Algorithms, LSTM-RNN. 

I. INTRODUCTION 

The rapidly growing progress in Internet-based technology 

has brought tremendous benefits to our society. 

Communications and other services that the Internet 

provides have transformed our lives in many ways. The 

Internet has opened up a whole new world of possibilities 

to access the information. Students and researchers do not 

need to go to the libraries to collect the information they 

need anymore. Nowadays, the information is just a few 

clicks away from one’s computer web browser. Social 

networking sites have eliminated geographic distance and 

made it easier to be in contact with family and friends. 

Online services, such as online shopping, online banking, 

and online learning, have made all these activities more 

convenient to do. 

While the Internet has made our lives much more 

convenient, its vulnerabilities and the amount of 
information communicating over it generate opportunities 

for adversaries to perform malicious activities within its 

infrastructure. Any host connected to the public Internet or 

even a private network is under constant threat from 

potential attacks. A lot of threats are created every day by 

individuals and organizations to attack computer networks 

to steal private information and data. This information can 

be very critical and sensitive, such as social security 

numbers or bank account information. This has created the 

need for security technologies to secure users’ information 

and provide reliable computer network environments. 
Network security has become a very important factor for 

the companies and organizations to consider. In that regard, 

intrusion detection plays an important role in the detection 

of attacks and with securing computer networks. Intrusion 

Detection Systems (IDS) monitor and analyze network 

systems to detect malicious activities. Even though users 

benefit from the use of IDS technology, more is needed to 

detect better obfuscated or more complex attack patterns. 

II. MACHINE LEARNING FOR THE DETECTION OF NETWORK 

ATTACKS 

 

Machine learning is a subfield of computer science, 

which uses pattern recognition and artificial intelligence 

methods to group and extract behaviours and entities from 

the data. These previously known patterns and relationships 

trained by machine learning algorithms can be used to do 

prediction tasks on new data. With today’s technology, 

machine learning algorithms touch our everyday life by 

being used in a wide range of applications. Examples from 
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common domains, which machine learning algorithms are 

extensively used, include product recommendations 

systems, such as the ones used by Amazon and Netflix; 

natural language processing; spam detection, image 

recognition and fraud detection. 
The most common operational network intrusion 

detection systems are signature based systems. These 

systems consist of a database of attack signatures. Human 

experts produce the attack signatures by manually 

analysing the attack data. The monitored network traffic is 

matched against this database to detect malicious activities. 

Producing attack signatures is a time consuming and 

manually intensive task. 

Recently, machine learning techniques have been 

applied to build predictive models for the detection of 

network attacks. Unlike signature based methods, which 
need manual analysis by human experts to extract attack 

patterns, machine learning algorithms are able to 

automatically extract similarities and patterns in the 

network data. With more data being produced than the 

human brain has the capacity to monitor, machine learning 

analysis provides results that even an army of analyst 

experts would be unable to accomplish. With machine 

learning affecting a lot of aspects in our everyday life, it is 

necessary to study the usage of its interdisciplinary 

capabilities in the detection of computer network attacks. 

Machine learning algorithms can be applied on network 

data to extract patterns and similarities, which distinguish 
between normal and attack instances. These trained 

patterns can be used to build intrusion detection systems for 

the detection of network attacks. With the bulk of the work 

being carried out by machine learning, the cyber security 

experts can become more productive by focusing on 

analytical results from machine learning models in order to 

get more insight about the current and future threats. 

 

 

III. BACKGROUND 

A. Deep Learning Architecture 

Deep learning is one of the machine learning methods 

that implements artificial neural networks. A deep learning 

network is a multi-layer neural network. Deep learning 

networks include deep neural networks (DNN), 

convolutional neural networks (CNN), recurrent neural 

networks (RNN), deep belief networks (DBN), and others. 

In this section, we will describe the architecture of RNN 

and long short-term memory (LSTM). 

  

B. Recurrent Neural Network (RNN) 

RNN is a type of artificial neural network (ANN), 

wherein the connection between the nodes resembles the 

neurons of a human brain. Neural network connections can 

transmit signals to other neurons/nodes like synapses in a 

biological brain. The artificial neuron then processes the 

received signal and transmits it to the other connected 

neurons/nodes. Neurons and connections typically have 
weights to adjust the learning process. The weight can vary 

to adjust the strength of the signal as the signal travels from 

the input layers to the output layers. An ANN contains 

hidden layers between the input and output layers. RNN 

should have at least three hidden layers. The basic 

architecture of RNNs includes input units, output units, and 

hidden units, with the hidden units performing all the 

calculations by weight adjustment to produce the outputs. 

The RNN model has a one-way flow of information from 

the input units to the hidden units and a directional loop 

that compares the error of this hidden layer to that of the 
previous hidden layer, and adjusts the weights between the 

hidden layers. Figure 1 represents a simple RNN 

architecture with two hidden layers. 

 

 

 
Fig 1: A Simple RNN 

 

An RNN is an extension of traditional feed-forward 

neural networks (FFNNs). In FFNNs, the information 

moves in only the forward direction; i.e., from the input 

nodes, through the hidden nodes, to the output nodes; there 
are no cycles or loops in the network. Hidden layers are 

optional in traditional FFNNs. We assume an input vector 

sequence, a hidden vector sequence, and an output vector 

sequence denoted by X, H, and Y, respectively. 

RNN uses gradient-based methods to learn time sequences: 

back-propagation through time (BPTT) or real-time 

recurrent learning (RTRL). In BPTT, the network is 

unfolded into a multilayer FFNN in which each time a 

sequence is processed to construct the FFNN; firstly the 

training data is used to train the model and then the output 

error gradient is saved for each time step. BPTT uses the 
standard back propagation algorithm to train each FFNN, 

and it updates the weights using the sum of the gradients 

obtained for weights in all layers of the network. RTRL is 

an online learning algorithm, where the error gradient is 

computed, and weights are updated for each time step in a 
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forward propagation manner. It computes the gradients of 

the internal and output nodes with respect to all the weights 

of the network. Standard RNNs are not able to establish 

more than 5–10 time steps. A vanishing gradient problem 

may arise in RNN when gradient-based learning methods 
are used for updating the weights. Weights receive an 

updated proportion of the partial derivative of the error 

function in each training iteration. In some cases, the 

gradient will be very small. These error signals may either 

blow-up or vanish, which prevents the weight from 

changing value. These vanishing error signals may cause 

the weights to fluctuate. With a vanishing error, learning 

takes an unacceptable amount of time or does not work at 

all. In [25], a detailed theoretical analysis and solution of 

that problem with long-term dependencies is presented. 

RNNs can be used for supervised classification learning. 
RNNs are difficult to train because of vanishing and 

exploding gradients. The problems of vanishing and 

exploding gradients arise due to improperly assigned 

weights (assigned to either very high or very low value). 

Thus, an LSTM with forget gates is often combined with an 

RNN to overcome these training issues [26,27]. However, 

RNNs are a good choice for solving time series sequence 

prediction problems. In [18–20], researchers showed that 

some implementations of LSTM-RNN provide notable 

performance in intrusion detection. In [21], Staudemeyer et 

al. used LSTM-RNN on the KDD Cup’99 datasets and 

showed that LSTM-RNN could learn all attack classes 
hidden in the training data. They also learned from their 

experiment that the receiver operating characteristics 

(ROC) curve and the AUC (area under the ROC curve) are 

well suited for selecting high performing networks. The 

ROC curve is the probability curve plotting the TPR 

against the FPR, where TPR is on the y-axis and FPR is on 

the x-axis. A ROC curve shows the performance of a 

classification model at all classification thresholds. AUC 

value measures the entire two-dimensional area under the 

ROC curve. AUC values range from 0 to 1. AUC = 0.0 

means the prediction of the model is 100% wrong and 
AUC = 1.0 means the prediction is 100% correct. 

C. Long Short-Term Memory 

LSTM can mitigate the problem of vanishing error  [19 

,21,23]. LSTM can learn how to bridge more than 1000 

discrete time steps [23]. LSTM networks replace all units 

in the hidden layer with memory blocks. Each memory  

block has at least one memory cell. Figure 2 demonstrates 

one cell in a basic LSTM network. The memory cells 

activate with the regulating gates. These gates control the 

incoming and outgoing information flow. A forget-gate is 

placed between an input gate and an output gate. Forget 

gates can reset the state of the linear unit if the stored 

information is no longer needed. These gates are simple 

sigmoid threshold units. These activation functions range 

from 0 to 1. 

 

Fig 2: LSTM Model 

 

IV. LSTM-RNN NIDS WITH A GENETIC ALGORITHM  

This section describes the LSTM-RNN NIDS with the 

feature-selection GA. The RNN is the basic model, and a 

LSTM network is used to achieve a high detection rate. In 

this research, the training dataset was used to train the 

classifier, and the testing dataset was then used to measure 
the accuracy of the classifier. Two types of classifications 

were conducted: binary and multi-class. Normal and 

anomaly are the two classes in binary classification, 

whereas normal, denial of service (DoS), probe, user-to 

root (U2R), and remote-to-local (R2L) are the five 

categories detected using multi-class classification. The 

classification metrics considered in this research are 

accuracy, precision, recall, f-score, true positive rate, and 

false-positive rate. The confusion matrix was calculated to 

show the records of true positive, true negative, false 

positive, and false negative records achieved in each 
model. The LSTM-RNN models were designed with 5, 10, 

20, 40, 60, 80, and 100 neurons in the hidden layers. 

Python 3.7 with the scikit-learn, TensorFlow, and Keras 

packages was used to develop the programs along with 

other Python open-source libraries. 

A. LSTM-RNN Classifier with GA Architecture 

Figure 3 shows the following steps performed for 

classifying network attacks using the LSTM-RNN 

classifier along with the GA. 
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Fig 3: LSTM-RNN Classifier with CA 

  

 

Step 1: Data Preprocessing 

Numericalization: Our training and testing datasets include 

38 numeric features and three nonnumeric features. We 

must make all the features numeric to apply them the 

model, so we converted the non-numeric features, protocol-

type, service, and flag, into numerals. There were three 

values in the protocol type, 70 values in service and 11 

values in flag features. In transforming all non-numeric 
features, we mapped 41 features into 122 (= 38 + 3 + 70 + 

11) features [15]. To transform the categorical features into 

binary features, we first transformed the features into 

integers using LabelEncoder, a scikit-learn package. Then 

the integers were passed to One-HotEncoder to transform 

them into binary features. The One-Hot-Encoder is a matrix 

of integers, which represent different sub-categories of 

categorical features. The output is a sparse matrix. Each 

column of the output matrix corresponds to one possible 

value of one feature. The values of the input features have 

the range [0, n]. Normalization: Some features in the 
feature space, such as duration, src_bytes, and dst_bytes, 

have a very large difference between the maximum and 

minimum values. We applied a logarithmic scaling method 

to map to the range [0,1][15]. Normalization is not required 

for every dataset, but a dataset like NSL-KDD, where the 

features have different ranges of values, will require 

normalizing the values. Normalization changes the values 

of a dataset to a common scale. If the features do not have a 

similar range of values, then the gradient descents may take 

too long to converge. By normalizing, we can assure that 

the gradient descents can converge more quickly. An added 

benefit is that normalizing data can also increase the 

accuracy of a classifier. 

Step 2: Feature Selection 

Feature selection from the dataset is the process of finding 

the most relevant feature-set for the future predictive model 
implementation. This technique was used to identify and 

remove the unneeded, redundant, and irrelevant features 

that do not contribute or decrease the accuracy of the future 

predictive model implementation for the classification. 

Optimal feature selection is one of the most important tasks 

in developing an excellent NIDS because some features can 

bias the classifier to identify a particular class, and that may 

increase the amount of misclassification. To minimize the 

misclassification rate, to minimize the training time, and to 

maximize the accuracy of the classifier, we have applied a 

GA in our experiment. Using a GA, we have obtained an 
optimal subset of 99 features from the original 122 

features. After applying the GA, insignificant data are 

removed from the original features set. The GA selects 

only a subset of relevant features. Accuracy is used as the 

fitness function in this research. We have calculated the 

maximum, minimum and average accuracy of the training 

dataset according to their labels. The GA provided a set of 

solutions by performing recombination and mutation of the 

features and selected the features with maximum, 

minimum, and average accuracy. The subset of features 

that gives the maximum accuracy was selected as the 

optimal feature set. We then prepared our training and 
testing datasets with this optimal feature set. The flow-chart 

of the GA implementation is shown in Figure 4. 

 
Fig 4: The flowchart of genetic algorithm implementation 

 

Step 3: LSTM-RNN Model Construction 

To build the LSTM-RNN model, first we selected hyper-
parameters and optimizers for both binary and multi-class 

classification. We determined the following hyper-

parameters: batch size, the number of epochs, learning rate, 

dropout, and activation function. 

a. Batch size is the number of training records in one 

forward and one backward pass. 

b. An epoch means one forward and one backward pass 

of all the training examples. 

c. Learning rate is the proportion of the weights that are 

updated during the training of the LSTM-RNN model. It 

can be chosen from the range [0.0–1.0]. 
d. Dropout is a regularization technique, where 

randomly selected neurons are ignored during training. The 
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selected neurons are temporarily removed on the forward 

pass. 

e. The activation function converts an input signal of a 

node in a neural network to an output signal, which is then 

used as the input of the next hidden layer and so on. To 
find the output of a layer, we calculated the sum of the 

products of inputs and their corresponding weights, applied 

the activation function to that sum, and then fed that output 

as an input to the next layer. 

A suitable optimizer plays a very crucial part in 

classification. From various available optimizers, we 

selected stochastic gradient descent (SGD) for multiclass 

classification and the Adam optimizer for binary 

classification. SGD provides a lower computational cost 

than other gradient descent optimizers used in multiclass 

classification. Because other optimizers, such as the batch 
gradient descent and mini-batch gradient descent 

optimizers, use all the training samples for completing one 

iteration, they are computationally expensive to use. The 

advantage of SGD is that it uses only one batch for each 

iteration. 

The Adam optimizer is easy to implement and 

computationally efficient because the decision is in binary 

and it requires less memory to implement. 

Step 4: Prediction and performance metrics calculation 

After fitting the model using the training dataset and testing 

dataset, we obtained the testing accuracy rate and loss 

value of the classifier. The testing dataset is used as a 
validation set to get an unbiased estimate of accuracy 

during the learning process. Then we used the 

predict_classes module of Keras to get the prediction 

matrix of the model; that is the classes predicted by the 

model. At this point, the expected classes have been 

defined in the original KDDTest+ dataset and the predicted 

classes. Next, we calculated the classification metrics such 

as precision, recall, f-score, true positive rate (TPR), false-

positive rate (FPR), and confusion matrix from the 

expected and predicted classes matrix.  

Step 5: Evaluation by performance analysis 
We performed Step 4 for both SVM and RF classifiers and 

then evaluated the performances of SVM, RF, and LSTM-

RNN by comparing the metrics. 

V. EXPERIMENTAL RESULTS 

In this section, we present the classification performance of 

the LSTM-RNN classifier according to accuracy, precision, 

recall, f-score, TPR and FPR on 5, 10, 20, 40, 60, 80, and 

100 neurons in the hidden layers, respectively. The 

classification performance is analyzed for both binary and 

5-class classification. For 5-class classification, the classes 

include normal, DoS, probe, U2R, and R2L attacks, while 

for binary classification, the classes include normal and 

anomaly. We also compared the performance of LSTM-

RNN with traditional machine learning approaches such as 

SVM and RF using the same mixed feature sets. We 

compared the performance using the 122-feature set and 

the 99-feature set, which were obtained with the genetic 

algorithm. 

 

 

VI. CONCLUSION 

In this paper, we compared different classifiers on the 

NSL-KDD dataset for both binary and multi-class 

classification. We considered SVM, random forest, and the 

LSTM-RNN model. We have shown that our proposed 

model produced the highest accuracy rate of 96.51% and 

99.91% for binary classification using 122 features and an 

optimal set of 99 features, respectively. The LSTM-RNN 

obtained higher accuracy than the SVM in binary 

classification. However, random forest was the best 

classifier among all in that case. However, using the 99-

feature set, we were able to get testing accuracy similar to 

that of RF. 
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