

International Journal of Engineering Technology and Management Sciences

Website: ijetms.in Issue: 1 Volume No.6 January – 2022 DOI: 10.46647/ijetms.2022.v06i01.006

ISSN: 2581-4621

38

Machine Learning Algorithms to Classify Network

Attacks
S.Bhaskara Naik1, R.Sasikala2

1Lecturer in Computer Science, S.V.B Govt. Degree College, Koilakuntla, Andhra Pradesh, India
2Assistant Professor, Dept. Of CSE, Karpagam College of Engineering,Coimbatore, Tamilnadu,India

1baskaranaik999@gmail.com

2sasikala.r@kce.ac.in

Abstract— An intrusion detection system (IDS) identifies

whether the network traffic behavior is normal or abnormal

or identifies the attack types. Recently, deep learning has

emerged as a successful approach in IDSs, having a high

accuracy rate with its distinctive learning mechanism. The

most common operational network intrusion detection

systems are signature based systems. These systems consist of

a database of attack signatures. Human experts produce the

attack signatures by manually analyzing the attack data. The

monitored network traffic is matched against this database to

detect malicious activities. Producing attack signatures is a

time consuming and manually intensive task.

Recently, machine learning techniques have been applied to

build predictive models for the detection of network attacks.

Unlike signature based methods, which need manual analysis

by human experts to extract attack patterns, machine learning

algorithms are able to automatically extract similarities and

patterns in the network data.

We found that using LSTM-RNN classifiers with the optimal

feature set improves intrusion detection. The performance of

the IDS was analyzed by calculating the accuracy, recall,

precision, f-score, and confusion matrix. The NSL-KDD

dataset was used to analyze the performances of the

classifiers. An LSTM-RNN was used to classify the NSL-KDD

datasets into binary (normal and abnormal) and multi-class

(Normal, DoS, Probing, U2R, and R2L) sets. The results

indicate that applying the GA increases the classification

accuracy of LSTM-RNN in both binary and multi-class

classification. The results of the LSTM-RNN classifier were

also compared with the results using a support vector machine

(SVM) and random forest (RF). For multi-class classification,

the classification accuracy of LSTM-RNN with the GA model

is much higher than SVM and RF. For binary classification,

the classification accuracy of LSTM-RNN is similar to that of

RF and higher than that of SVM.

Keywords—Machine Learning, Algorithms, Network Attacks,

Genetic Algorithms, LSTM-RNN.

I. INTRODUCTION

The rapidly growing progress in Internet-based technology

has brought tremendous benefits to our society.

Communications and other services that the Internet

provides have transformed our lives in many ways. The

Internet has opened up a whole new world of possibilities

to access the information. Students and researchers do not

need to go to the libraries to collect the information they

need anymore. Nowadays, the information is just a few

clicks away from one’s computer web browser. Social

networking sites have eliminated geographic distance and

made it easier to be in contact with family and friends.

Online services, such as online shopping, online banking,

and online learning, have made all these activities more

convenient to do.

While the Internet has made our lives much more

convenient, its vulnerabilities and the amount of
information communicating over it generate opportunities

for adversaries to perform malicious activities within its

infrastructure. Any host connected to the public Internet or

even a private network is under constant threat from

potential attacks. A lot of threats are created every day by

individuals and organizations to attack computer networks

to steal private information and data. This information can

be very critical and sensitive, such as social security

numbers or bank account information. This has created the

need for security technologies to secure users’ information

and provide reliable computer network environments.
Network security has become a very important factor for

the companies and organizations to consider. In that regard,

intrusion detection plays an important role in the detection

of attacks and with securing computer networks. Intrusion

Detection Systems (IDS) monitor and analyze network

systems to detect malicious activities. Even though users

benefit from the use of IDS technology, more is needed to

detect better obfuscated or more complex attack patterns.

II. MACHINE LEARNING FOR THE DETECTION OF NETWORK

ATTACKS

Machine learning is a subfield of computer science,

which uses pattern recognition and artificial intelligence

methods to group and extract behaviours and entities from

the data. These previously known patterns and relationships

trained by machine learning algorithms can be used to do

prediction tasks on new data. With today’s technology,

machine learning algorithms touch our everyday life by

being used in a wide range of applications. Examples from

International Journal of Engineering Technology and Management Sciences

Website: ijetms.in Issue: 1 Volume No.6 January – 2022 DOI: 10.46647/ijetms.2022.v06i01.006

ISSN: 2581-4621

39

common domains, which machine learning algorithms are

extensively used, include product recommendations

systems, such as the ones used by Amazon and Netflix;

natural language processing; spam detection, image

recognition and fraud detection.
The most common operational network intrusion

detection systems are signature based systems. These

systems consist of a database of attack signatures. Human

experts produce the attack signatures by manually

analysing the attack data. The monitored network traffic is

matched against this database to detect malicious activities.

Producing attack signatures is a time consuming and

manually intensive task.

Recently, machine learning techniques have been

applied to build predictive models for the detection of

network attacks. Unlike signature based methods, which
need manual analysis by human experts to extract attack

patterns, machine learning algorithms are able to

automatically extract similarities and patterns in the

network data. With more data being produced than the

human brain has the capacity to monitor, machine learning

analysis provides results that even an army of analyst

experts would be unable to accomplish. With machine

learning affecting a lot of aspects in our everyday life, it is

necessary to study the usage of its interdisciplinary

capabilities in the detection of computer network attacks.

Machine learning algorithms can be applied on network

data to extract patterns and similarities, which distinguish
between normal and attack instances. These trained

patterns can be used to build intrusion detection systems for

the detection of network attacks. With the bulk of the work

being carried out by machine learning, the cyber security

experts can become more productive by focusing on

analytical results from machine learning models in order to

get more insight about the current and future threats.

III. BACKGROUND

A. Deep Learning Architecture

Deep learning is one of the machine learning methods

that implements artificial neural networks. A deep learning

network is a multi-layer neural network. Deep learning

networks include deep neural networks (DNN),

convolutional neural networks (CNN), recurrent neural

networks (RNN), deep belief networks (DBN), and others.

In this section, we will describe the architecture of RNN

and long short-term memory (LSTM).

B. Recurrent Neural Network (RNN)

RNN is a type of artificial neural network (ANN),

wherein the connection between the nodes resembles the

neurons of a human brain. Neural network connections can

transmit signals to other neurons/nodes like synapses in a

biological brain. The artificial neuron then processes the

received signal and transmits it to the other connected

neurons/nodes. Neurons and connections typically have
weights to adjust the learning process. The weight can vary

to adjust the strength of the signal as the signal travels from

the input layers to the output layers. An ANN contains

hidden layers between the input and output layers. RNN

should have at least three hidden layers. The basic

architecture of RNNs includes input units, output units, and

hidden units, with the hidden units performing all the

calculations by weight adjustment to produce the outputs.

The RNN model has a one-way flow of information from

the input units to the hidden units and a directional loop

that compares the error of this hidden layer to that of the
previous hidden layer, and adjusts the weights between the

hidden layers. Figure 1 represents a simple RNN

architecture with two hidden layers.

Fig 1: A Simple RNN

An RNN is an extension of traditional feed-forward

neural networks (FFNNs). In FFNNs, the information

moves in only the forward direction; i.e., from the input

nodes, through the hidden nodes, to the output nodes; there
are no cycles or loops in the network. Hidden layers are

optional in traditional FFNNs. We assume an input vector

sequence, a hidden vector sequence, and an output vector

sequence denoted by X, H, and Y, respectively.

RNN uses gradient-based methods to learn time sequences:

back-propagation through time (BPTT) or real-time

recurrent learning (RTRL). In BPTT, the network is

unfolded into a multilayer FFNN in which each time a

sequence is processed to construct the FFNN; firstly the

training data is used to train the model and then the output

error gradient is saved for each time step. BPTT uses the
standard back propagation algorithm to train each FFNN,

and it updates the weights using the sum of the gradients

obtained for weights in all layers of the network. RTRL is

an online learning algorithm, where the error gradient is

computed, and weights are updated for each time step in a

International Journal of Engineering Technology and Management Sciences

Website: ijetms.in Issue: 1 Volume No.6 January – 2022 DOI: 10.46647/ijetms.2022.v06i01.006

ISSN: 2581-4621

40

forward propagation manner. It computes the gradients of

the internal and output nodes with respect to all the weights

of the network. Standard RNNs are not able to establish

more than 5–10 time steps. A vanishing gradient problem

may arise in RNN when gradient-based learning methods
are used for updating the weights. Weights receive an

updated proportion of the partial derivative of the error

function in each training iteration. In some cases, the

gradient will be very small. These error signals may either

blow-up or vanish, which prevents the weight from

changing value. These vanishing error signals may cause

the weights to fluctuate. With a vanishing error, learning

takes an unacceptable amount of time or does not work at

all. In [25], a detailed theoretical analysis and solution of

that problem with long-term dependencies is presented.

RNNs can be used for supervised classification learning.
RNNs are difficult to train because of vanishing and

exploding gradients. The problems of vanishing and

exploding gradients arise due to improperly assigned

weights (assigned to either very high or very low value).

Thus, an LSTM with forget gates is often combined with an

RNN to overcome these training issues [26,27]. However,

RNNs are a good choice for solving time series sequence

prediction problems. In [18–20], researchers showed that

some implementations of LSTM-RNN provide notable

performance in intrusion detection. In [21], Staudemeyer et

al. used LSTM-RNN on the KDD Cup’99 datasets and

showed that LSTM-RNN could learn all attack classes
hidden in the training data. They also learned from their

experiment that the receiver operating characteristics

(ROC) curve and the AUC (area under the ROC curve) are

well suited for selecting high performing networks. The

ROC curve is the probability curve plotting the TPR

against the FPR, where TPR is on the y-axis and FPR is on

the x-axis. A ROC curve shows the performance of a

classification model at all classification thresholds. AUC

value measures the entire two-dimensional area under the

ROC curve. AUC values range from 0 to 1. AUC = 0.0

means the prediction of the model is 100% wrong and
AUC = 1.0 means the prediction is 100% correct.

C. Long Short-Term Memory

LSTM can mitigate the problem of vanishing error [19

,21,23]. LSTM can learn how to bridge more than 1000

discrete time steps [23]. LSTM networks replace all units

in the hidden layer with memory blocks. Each memory

block has at least one memory cell. Figure 2 demonstrates

one cell in a basic LSTM network. The memory cells

activate with the regulating gates. These gates control the

incoming and outgoing information flow. A forget-gate is

placed between an input gate and an output gate. Forget

gates can reset the state of the linear unit if the stored

information is no longer needed. These gates are simple

sigmoid threshold units. These activation functions range

from 0 to 1.

Fig 2: LSTM Model

IV. LSTM-RNN NIDS WITH A GENETIC ALGORITHM

This section describes the LSTM-RNN NIDS with the

feature-selection GA. The RNN is the basic model, and a

LSTM network is used to achieve a high detection rate. In

this research, the training dataset was used to train the

classifier, and the testing dataset was then used to measure
the accuracy of the classifier. Two types of classifications

were conducted: binary and multi-class. Normal and

anomaly are the two classes in binary classification,

whereas normal, denial of service (DoS), probe, user-to

root (U2R), and remote-to-local (R2L) are the five

categories detected using multi-class classification. The

classification metrics considered in this research are

accuracy, precision, recall, f-score, true positive rate, and

false-positive rate. The confusion matrix was calculated to

show the records of true positive, true negative, false

positive, and false negative records achieved in each
model. The LSTM-RNN models were designed with 5, 10,

20, 40, 60, 80, and 100 neurons in the hidden layers.

Python 3.7 with the scikit-learn, TensorFlow, and Keras

packages was used to develop the programs along with

other Python open-source libraries.

A. LSTM-RNN Classifier with GA Architecture

Figure 3 shows the following steps performed for

classifying network attacks using the LSTM-RNN

classifier along with the GA.

International Journal of Engineering Technology and Management Sciences

Website: ijetms.in Issue: 1 Volume No.6 January – 2022 DOI: 10.46647/ijetms.2022.v06i01.006

ISSN: 2581-4621

41

Fig 3: LSTM-RNN Classifier with CA

Step 1: Data Preprocessing

Numericalization: Our training and testing datasets include

38 numeric features and three nonnumeric features. We

must make all the features numeric to apply them the

model, so we converted the non-numeric features, protocol-

type, service, and flag, into numerals. There were three

values in the protocol type, 70 values in service and 11

values in flag features. In transforming all non-numeric
features, we mapped 41 features into 122 (= 38 + 3 + 70 +

11) features [15]. To transform the categorical features into

binary features, we first transformed the features into

integers using LabelEncoder, a scikit-learn package. Then

the integers were passed to One-HotEncoder to transform

them into binary features. The One-Hot-Encoder is a matrix

of integers, which represent different sub-categories of

categorical features. The output is a sparse matrix. Each

column of the output matrix corresponds to one possible

value of one feature. The values of the input features have

the range [0, n]. Normalization: Some features in the
feature space, such as duration, src_bytes, and dst_bytes,

have a very large difference between the maximum and

minimum values. We applied a logarithmic scaling method

to map to the range [0,1][15]. Normalization is not required

for every dataset, but a dataset like NSL-KDD, where the

features have different ranges of values, will require

normalizing the values. Normalization changes the values

of a dataset to a common scale. If the features do not have a

similar range of values, then the gradient descents may take

too long to converge. By normalizing, we can assure that

the gradient descents can converge more quickly. An added

benefit is that normalizing data can also increase the

accuracy of a classifier.

Step 2: Feature Selection

Feature selection from the dataset is the process of finding

the most relevant feature-set for the future predictive model
implementation. This technique was used to identify and

remove the unneeded, redundant, and irrelevant features

that do not contribute or decrease the accuracy of the future

predictive model implementation for the classification.

Optimal feature selection is one of the most important tasks

in developing an excellent NIDS because some features can

bias the classifier to identify a particular class, and that may

increase the amount of misclassification. To minimize the

misclassification rate, to minimize the training time, and to

maximize the accuracy of the classifier, we have applied a

GA in our experiment. Using a GA, we have obtained an
optimal subset of 99 features from the original 122

features. After applying the GA, insignificant data are

removed from the original features set. The GA selects

only a subset of relevant features. Accuracy is used as the

fitness function in this research. We have calculated the

maximum, minimum and average accuracy of the training

dataset according to their labels. The GA provided a set of

solutions by performing recombination and mutation of the

features and selected the features with maximum,

minimum, and average accuracy. The subset of features

that gives the maximum accuracy was selected as the

optimal feature set. We then prepared our training and
testing datasets with this optimal feature set. The flow-chart

of the GA implementation is shown in Figure 4.

Fig 4: The flowchart of genetic algorithm implementation

Step 3: LSTM-RNN Model Construction

To build the LSTM-RNN model, first we selected hyper-
parameters and optimizers for both binary and multi-class

classification. We determined the following hyper-

parameters: batch size, the number of epochs, learning rate,

dropout, and activation function.

a. Batch size is the number of training records in one

forward and one backward pass.

b. An epoch means one forward and one backward pass

of all the training examples.

c. Learning rate is the proportion of the weights that are

updated during the training of the LSTM-RNN model. It

can be chosen from the range [0.0–1.0].
d. Dropout is a regularization technique, where

randomly selected neurons are ignored during training. The

International Journal of Engineering Technology and Management Sciences

Website: ijetms.in Issue: 1 Volume No.6 January – 2022 DOI: 10.46647/ijetms.2022.v06i01.006

ISSN: 2581-4621

42

selected neurons are temporarily removed on the forward

pass.

e. The activation function converts an input signal of a

node in a neural network to an output signal, which is then

used as the input of the next hidden layer and so on. To
find the output of a layer, we calculated the sum of the

products of inputs and their corresponding weights, applied

the activation function to that sum, and then fed that output

as an input to the next layer.

A suitable optimizer plays a very crucial part in

classification. From various available optimizers, we

selected stochastic gradient descent (SGD) for multiclass

classification and the Adam optimizer for binary

classification. SGD provides a lower computational cost

than other gradient descent optimizers used in multiclass

classification. Because other optimizers, such as the batch
gradient descent and mini-batch gradient descent

optimizers, use all the training samples for completing one

iteration, they are computationally expensive to use. The

advantage of SGD is that it uses only one batch for each

iteration.

The Adam optimizer is easy to implement and

computationally efficient because the decision is in binary

and it requires less memory to implement.

Step 4: Prediction and performance metrics calculation

After fitting the model using the training dataset and testing

dataset, we obtained the testing accuracy rate and loss

value of the classifier. The testing dataset is used as a
validation set to get an unbiased estimate of accuracy

during the learning process. Then we used the

predict_classes module of Keras to get the prediction

matrix of the model; that is the classes predicted by the

model. At this point, the expected classes have been

defined in the original KDDTest+ dataset and the predicted

classes. Next, we calculated the classification metrics such

as precision, recall, f-score, true positive rate (TPR), false-

positive rate (FPR), and confusion matrix from the

expected and predicted classes matrix.

Step 5: Evaluation by performance analysis
We performed Step 4 for both SVM and RF classifiers and

then evaluated the performances of SVM, RF, and LSTM-

RNN by comparing the metrics.

V. EXPERIMENTAL RESULTS

In this section, we present the classification performance of

the LSTM-RNN classifier according to accuracy, precision,

recall, f-score, TPR and FPR on 5, 10, 20, 40, 60, 80, and

100 neurons in the hidden layers, respectively. The

classification performance is analyzed for both binary and

5-class classification. For 5-class classification, the classes

include normal, DoS, probe, U2R, and R2L attacks, while

for binary classification, the classes include normal and

anomaly. We also compared the performance of LSTM-

RNN with traditional machine learning approaches such as

SVM and RF using the same mixed feature sets. We

compared the performance using the 122-feature set and

the 99-feature set, which were obtained with the genetic

algorithm.

VI. CONCLUSION

In this paper, we compared different classifiers on the

NSL-KDD dataset for both binary and multi-class

classification. We considered SVM, random forest, and the

LSTM-RNN model. We have shown that our proposed

model produced the highest accuracy rate of 96.51% and

99.91% for binary classification using 122 features and an

optimal set of 99 features, respectively. The LSTM-RNN

obtained higher accuracy than the SVM in binary

classification. However, random forest was the best

classifier among all in that case. However, using the 99-

feature set, we were able to get testing accuracy similar to

that of RF.

References

1. Denning, D.E. An intrusion-detection model. IEEE
Trans. Softw. Eng. 1987, 13, 222–232. [CrossRef]

2. Peddabachigari, S.; Abraham, A.; Thomas, J. Intrusion

Detection Systems Using Decision Trees and Support

Vector Machines. Int. J. Appl. Sci. Comput. 2004, 11, 118–

134.

3. Rai, K.; Devi, M.S.; Guleria, A. Decision Tree Based

Algorithm for Intrusion Detection. Int. J. Adv. Netw. Appl.

2016, 7, 2828–2834.

4. Ingre, B.; Yadav, A.; Soni, A. K Decision Tree-Based

Intrusion Detection System for NSL-KDD Dataset. In

International Journal of Engineering Technology and Management Sciences

Website: ijetms.in Issue: 1 Volume No.6 January – 2022 DOI: 10.46647/ijetms.2022.v06i01.006

ISSN: 2581-4621

43

Proceedings of the International Conference on Information

and Communication Technology for Intelligent Systems,

Ahmedabad, India, 25–26 March 2017. [CrossRef]

5. Farnaaz, N.; Jabbar, M.A. Random Forest Modeling for

Network Intrusion Detection System. Procedia Comput.
Sci. 2016, 89, 213–217. [CrossRef]

6. Alom, M.Z.; Taha, T.M. Network intrusion detection for

cybersecurity using unsupervised deep learning

approaches. In Proceedings of the IEEE National

Aerospace and Electronics Conference (NAECON),

Dayton, OH, USA, 27–30 June 2017. [CrossRef]

7. Yuan, Y.; Huo, L.; Hogrefe, D. Two Layers Multi-class

Detection Method for Network Intrusion Detection System.

In Proceedings of the IEEE Symposium on Computers and

Communications (ISCC), Heraklion, Greece, 3–6 July

2017. [CrossRef]
8. Gurav, R.; Junnarkar, A.A. Classifying Attacks in NIDS

Using Naïve- Bayes and MLP. Int. J. Sci. Eng. Technol.

Res. (IJSETR) 2015, 4, 2440–2443.

9. Tangi, S.D.; Ingale, M.D. A Survey: Importance of

ANN-based NIDS in Detection of DoS Attacks. Int. J.

Comput. Appl. 2013, 83. [CrossRef]

10. Szegedy, C.; Toshev, A.; Erhan, D. Deep Neural

Networks for Object Detection. In Proceedings of the 26th

International Conference on Neural Information Processing

Systems—Volume 2; Curran Associates Inc.: Red Hook,

NY, USA, 2013; pp. 2553–2561.

11. Wang, M.; Huang, Q.; Zhang, J.; Li, Z.; Pu, H.; Lei, J.;
Wang, L. Deep Learning Approaches for Voice Activity

Detection. In Proceedings of the International Conference

on Cyber Security Intelligence and Analytics, Shenyang,

China, 21–22 February 2019; pp. 816–826.

12. Tang, T.A.; Mhamdi, L.; McLernon, D.; Zaidi, S.A.R.;

Ghogho, M. Deep Learning Approach for Network

Intrusion Detection in Software-Defined Networking. In

Proceedings of the 2016 International Conference on

Wireless Networks and Mobile Communications, Fez,

Morocco, 26–29 October 2016. [CrossRef]

13. Arora, K.; Chauhan, R. Improvement in the
Performance of Deep Neural Network Model using

learning rate. In Proceedings of the Innovations in Power

and Advanced Computing Technologies (i-PACT), Vellore,

India, 21–22 April 2017. [CrossRef]

14. Tang, T.A.; Mhamdi, L.; McLernon, D.; Zaidi SA, R.;

Ghogho, M. Deep Recurrent Neural Network for Intrusion

Detection in SDN-based Networks. In Proceedings of the

4th IEEE International Conference on Network

Softwarization (NetSoft), Montreal, QC, Canada, 25–29

June 2018. [CrossRef]

15. Yin, C.; Zhu, Y.; Fei, J.; He, X. A Deep Learning

Approach for Intrusion Detection Using Recurrent Neural
Networks. IEEE Access 2017, 5, 21954–21961. [CrossRef]

16. Vinayakumar, R.; Soman, K.P.; Poornachandran, P.

Applying convolutional neural network for network

intrusion detection. In Proceedings of the International

Conference on Advances in Computing, Communications,

and Informatics (ICACCI), Udupi, India, 13–16 September

2017. [CrossRef]

17. Zhao, G.; Zhang, C.; Zheng, L. Intrusion Detection
Using Deep Belief Network and Probabilistic Neural

Network. In Proceedings of the IEEE International

Conference on Computational Science and Engineering

(CSE) and IEEE International Conference on Embedded

and Ubiquitous Computing (EUC), Guangzhou, China, 21–

24 July 2017. [CrossRef]

18. Kim, J.; Kim, J.; Thu HL, T.; Kim, H. Long Short-

Term Memory Recurrent Neural Network Classifier for

Intrusion Detection. In Proceedings of the International

Conference on Platform Technology and Service (PlatCon),

Jeju, Korea, 15–17 February 2016. [CrossRef]
19. Staudemeyer, R.C. Applying long short-term memory

recurrent neural networks to intrusion detection. S. Afr.

Comput. J. 2015, 56, 136–154. [CrossRef]

20. Meng, F.; Fu, Y.; Lou, F.; Chen, Z. An Effective

Network Attack Detection Method Based on Kernel PCA

and LSTM-RNN. In Proceedings of the International

Conference on Computer Systems, Electronics, and Control

(ICCSEC), Dalian, China, 25–27 December 2017.

[CrossRef]

21. Staudemeyer, R.C.; Omlin, C.W. Evaluating

performance of long short-term memory recurrent neural

networks on intrusion detection data. In Proceedings of the
South African Institute for Computer Scientists and

Information Technologists Conference; Association for

Computing Machinery: New York, NY, USA, 2013; pp.

218–224. [CrossRef]

22. Javaid, A.; Niyaz, Q.; Sun, W.; Alam, M. A Deep

Learning Approach for Network Intrusion Detection

System. In Proceedings of the 9th EAI International

Conference on Bio-inspired Information and

Communications Technologies (BIONETICS), New York,

NY, USA, 24 May 2016; pp. 21–26. [CrossRef]

23. Hindy, H.; Brosset, D.; Bayne, E.; Seeam, A.;
Tachtatzis, C.; Atkinson, R.; Bellekens, X. A Taxonomy

and Survey of Intrusion Detection System Design

Techniques, Network Threats and Datasets. arXiv 2018,

arXiv:1806.03517.

24. Artificial Neural Network–Wikipedia. Available online:

https://en.wikipedia.org/wiki/Artificial_neural_ network

(accessed on 29 April 2020).

25. Recurrent Neural Network-Wikipedia. Available

online: https://en.wikipedia.org/wiki/Recurrent_neural_

network (accessed on 29 April 2020).

26. Hochreiter, S.; Bengio, Y.; Frasconi, P.; Schmidhuber,

J. Gradient Flow in Recurrent Nets: The Difficulty of
Learning Long-term Dependencies. In A Field Guide to

Dynamical Recurrent Neural Networks; IEEE Press:

Piscataway, NJ, USA, 2001; pp. 237–243. [CrossRef]

International Journal of Engineering Technology and Management Sciences

Website: ijetms.in Issue: 1 Volume No.6 January – 2022 DOI: 10.46647/ijetms.2022.v06i01.006

ISSN: 2581-4621

44

27. Williams, R.J.; Zipser, D. Gradient based learning

algorithms for recurrent networks and their computational

complexity. In Backpropagation: Theory, Architectures,

and Applications; Lawrence Erlbaum Associates: Hillsdale,

NJ, USA, 1995; pp. 433–486.
28. Genetic Algorithms—Introduction. Available online:

https://www.tutorialspoint.com/genetic_algorithms/

genetic_algorithms_introduction.htm (accessed on

29 April 2020). 29. Tavallaee, M.; Bagheri, E.; Lu, W.;

Ghorbani, A.A. A Detailed Analysis of the KDD CUP 99

Data Set. In Proceedings of the 2009 IEEE Symposium on

Computational Intelligence for Security and Defense

Applications, Ottawa, ON, Canada, 8–10 July 2009;

pp. 1–6.

	I. INTRODUCTION
	II. Machine Learning for the Detection of Network Attacks

	III. Background
	A. Deep Learning Architecture
	B. Recurrent Neural Network (RNN)
	C. Long Short-Term Memory

	IV. LSTM-RNN NIDS with a Genetic Algorithm
	A. LSTM-RNN Classifier with GA Architecture

	V. Experimental Results
	VI. Conclusion

