
International Journal of Engineering Technology and ManagementSciences

Website: ijetms.in Issue: 3 Volume No.6 May – 2022

DOI:10.46647/ijetms.2022.v06i03.019 ISSN: 2581-4621

116

TCAM Network Memory Error Detection and Correction Method

Thirumala Vidya Sagar S1, B.D.Venkatramana Reddy2

1M.Tech Student,Dept. of ECE, Viswam Engineering College, Madanapalli, AP, India
2Associate Professor,Dept. of ECE, Viswam Engineering College, Madanapalli, AP, India

Abstract: Ternary content addressable memories (TCAMs) are widelyused in network devices to implement

packet classification. They are used, for example, for packet forwarding, for security, and to implement

software-defined networks (SDNs). TCAMs are commonly implemented as standalone devices or as an

intellectual property block that is integrated on networking application-specific integrated circuits. On the other

hand, field-programmable gate arrays (FPGAs) do not include TCAM blocks. However, the flexibility of FPGAs

makes them attractive for SDN implementations, and most FPGA vendors provide development kits for SDN.

Those need to support TCAM functionality and, therefore, there is a need to emulate TCAMs using the logic

blocks available in the FPGA. In recent years, a number of schemes to emulate TCAMs on FPGAs have been

proposed. Some of them take advantage of the large number of memory blocks available inside modern FPGAs

to use them to implement TCAMs. A problem when using memories is that they can be affected by soft errors

that corrupt the stored bits. The memories can be protected with a parity check to detect errors or with an error
correction code to correct them, but this requires additional memory bits per word. In this brief, the protection

of the memories used to emulate TCAMs is considered. In particular, it is shown that by exploiting the fact that

only a subset of the possible memory contents are valid, most single-bit errors can be corrected when the

memories are protected with a parity bit.

Keywords: Field-programmable gate arrays (FPGA), soft errors, ternary content addressable memories

(TCAM)

1. INTRODUCTION

Ternary Content Addressable Memory (TCAM) is a special type of memory. For random

access memory (RAM), a bit has only two possible values (i.e., 0 or 1), and the input is the

index and the output is the content of the memory at that index. Whereas, a bit in TCAM

has three possible values: 0, 1, or *, where * means ‘‘don’t care’’. Each entry in TCAMs is

an array of 0s, 1s, or *s. TCAMs work in a reverse manner as compared to RAMs: the

input to a TCAM chip is a packet header (i.e., a search key) of 0s and 1s, and the output is

the index of the first entry that the key matches where decisions are stored [1]. A search

key matches an entry if and only if their bits of 0s and 1s match. For example, 1,001

matches a TCAM entry 10**. Furthermore, a TCAMs searches the entire memory in one

operation, so it is considerably faster than RAMs. In essence, a TCAM is a parallel search

machine, not just memory.

TCAMs are the core component of many networking devices such as routers, switches,

firewalls and intrusion detection/prevention systems. One major task performed by TCAMs

is packet classification, the processing of finding the first rule that a given packet matches

in a rule list. In TCAM-based packet classification, rules are stored in the TCAM in

ternary format. Thus, when a packet comes, only one TCAM lookup is needed. The result

of the TCAM lookup is the index in the memory where packet decisions, such as accept or

drop, are stored. This superior constant lookup performance is the key reason that many

networking devices use TCAMs to implement their lookup operations.

A TCAM bit may flip to any of the other two values of 0, 1, or * due to environmental

impacts. Memory and electronics in general are susceptible to non- persistent faults, called

soft errors, due to radiation events that generate enough electricity to cause a bit to flip in

memory or for a transistor to trigger or fail to trigger [2, 3]. TCAMs are even more

susceptible to soft errors than RAMs because of much higher circuit density [4].

Furthermore, the soft errors in TCAMs are more damaging than the soft errors in RAMs.

While a soft error in RAM only causes one lookup to fail, a soft error in a TCAM chip can

cause many different lookups to fail due to the first matching semantics: the lookup result

International Journal of Engineering Technology and ManagementSciences

Website: ijetms.in Issue: 3 Volume No.6 May – 2022

DOI:10.46647/ijetms.2022.v06i03.019 ISSN: 2581-4621

117

of a search key is the index of the first entry that the key matches [5]. For example, if a

TCAM entry ‘‘1**’’ changes to ‘‘100’’, then the lookup results of the three keys ‘‘101’’,

‘‘110’’, and ‘‘111’’ may become erroneous. In fact, a single erroneous entry in a TCAM

can cause 100 % of search keys to have erroneous lookup results in the worst case. TCAMs

are increasingly prone to more soft errors as the area efficiency of memory devices

decreases [5]. Furthermore, Mastipuram et al. [5] reported that soft errors induced the

highest failure rate of all other reliability mechanisms combined in TCAMs. Consequently,

it is important to ensure reliability in TCAM operations because soft errors can potentially

jeopardize their application in mission-critical network management applications.

Figure 1 shows different effects of soft errors in TCAMs. Note that the index returned by

an erroneous lookup may be smaller or greater than the index returned by a correct lookup.

Figure 1a shows an example TCAM table without errors, on which the lookup result for

search key 0010 is the second entry. Figure 1b shows an implementation of the table in Fig.

1a where the last bit in the first entry is flipped from 1 to 0. On this table, the lookup result

for search key 0010 is the first entry. Figure 1c shows an implementation of the table in

Fig. 1a where the third bit in the second entry is flipped from * to 0. On this table, the the

lookup result for search key 0010 is the third entry. Moreover, some soft errors do not affect

the lookup result of any search key in a TCAM. For example, the first bit in the fourth entry

in Fig. 1c erroneously flipped from * to 1. However, this error does not affect any lookup.

In this paper, we do not consider such benign errors as they cause no harm. In the rest of

this paper, the term TCAM errors refers to harmful TCAM errors.

 errors

(a) (b) (c)

Fig. 1 Effects of TCAM soft

2. RELATED WORK

RAM-based associative content-addressable memory (CAM) was presented in a U.S.

patent. Its memory requirement increases exponentially with the increase in the pattern bits of

CAM. For large bit patterns, it does not scale well in terms of the memory requirement,

power consumption, and cost. Thus, it is not feasible to implement it on ASIC or FPGA

platforms. Contrary to this our proposed work is memory-efficient and achieves a reduction

in the dynamic power consumption by reducing the exponential increase in RAM memory to

a linear increase. This is achieved by partitioning the large width TCAM bit patterns and then

implementing them as a cascade of SRAM blocks in the proposed architecture.

A set-associative memory architecture implemented in hardware using the well-

known hashing method was presented in. It used RAM memory to implement CAM.

However, in order to support TCAM functionality, the architecture suffered from inefficient

memory utilization as it required two bits to encode ternary bits. On the contrary, our

proposed solution does not encode ternary bits as two bits. The proposed solution addresses

RAM memory with TCAM content, and each RAM word corresponds to a specific TCAM

data pattern. In order to implement “don’t care” bits, more than one RAM word is selected.

International Journal of Engineering Technology and ManagementSciences

Website: ijetms.in Issue: 3 Volume No.6 May – 2022

DOI:10.46647/ijetms.2022.v06i03.019 ISSN: 2581-4621

118

The proposed solution maps all possible TCAM data as RAM addresses. Two types of FPGA

implementations: a CAM based on Xilinx BRAM resource and a TCAM based on 16-bit shift

registers (SRL16E)-are presented in Xilinx application note [20]. This emulation of TCAM

on FPGA consumes one SRL16E for implementing two bits of TCAM. The shift register

based TCAM works efficiently for smaller TCAMs whereas, for implementing large storage

capacity TCAMs, its design experience routing congestion and timing challenges.

 The proposed solution implements TCAM using the embedded SRAM memory

blocks available on FPGAs and scales well in terms of speed and power consumption for

implementing TCAMS of large storage capacity. A low-power SRAM-based CAM design

implementation on FPGA was presented in a previous work [17]. It performs a hierarchical

lookup of the design-configured SRAM blocks. It achieves low power consumption by

stopping subsequent SRAM lookup operations if a match is found in the present SRAM

block. Although it reduces the average power consumption of the design, its worst-case

power consumption remains high, which is not beneficial for the designed hardware as the

hardware is designed based on the worst-case power consumption budget. In contrast,

proposed work achieves a significant reduction in the worst-case power consumption of the

implemented TCAM design.

 Algorithmic solutions of TCAM implemented in SRAM-based pipelines on FPGAs

suffer from non-deterministic throughput, long latencies, and inefficient memory usage. A

resource-efficient SRAM-based TCAM design was presented in, which stored the validation

information of the TCAM words in distributed RAM blocks and the address information in

the sub-blocks of the embedded SRAM memory blocks on FPGA. It completed the lookup

operation for the incoming TCAM word via multiple high-speed sequential reads from the

sub-blocks of its SRAM blocks and thus resulted in a degraded system throughput. The

multiple high-frequency SRAM read operations per input word’s lookup resulted in higher

dynamic power consumption of the design. Proposed work stores the validation and address

information of the TCAM words in a single SRAM memory block and a single read

operation is performed for completing the incoming TCAM word’s lookup. Thus, achieves

higher throughput with reduced overall power consumption.

The design methodologies presented in employs multiple distinct SRAM blocks for

implementing TCAM functionality. These stores the TCAM word’s existence and address

information separately in distinct sets of SRAM blocks. The Input TCAM word is applied to

the first set of SRAM blocks to read its existence information and the address information is

read from the second set of SRAM blocks. These TCAM design methodologies using

multiple distinct SRAM blocks utilizes excessive SRAM memory. These works suffered

from higher power consumption as the entire used excessive SRAM memory is activated for

the incoming TCAM word lookup. In contrast, our proposed work stores the TCAM word’s

existence and address information in a single RAM, thus realizing efficient memory usage.

Moreover, proposed work achieves substantially reduced power consumption by activating at

most one row of SRAM blocks for incoming TCAM words.

The SRAM-based design methodology with efficient storage efficiency in previous

work stored the existence and address information of TCAM word in a single SRAM

memory block. A similar approach implemented an SRAM-based TCAM design using Xilinx

BRAM or distributed RAM resource and provided an in-depth theoretical analysis in.

However, these works energize all used SRAM memory blocks in the design for each

incoming TCAM word’s lookup. Thus, consumes higher power consumption. In contrast

proposed TCAM architecture selectively energizes a part of SRAM memory blocks used,

achieving a substantial reduction in the overall dynamic power consumption of the design.

A recent work presented in uses multi-pumping enabled multi-ported SRAM memory

for implementing memory efficient TCAM design on FPGA. It stores the sub-blocks of

International Journal of Engineering Technology and ManagementSciences

Website: ijetms.in Issue: 3 Volume No.6 May – 2022

DOI:10.46647/ijetms.2022.v06i03.019 ISSN: 2581-4621

119

partitioned TCAM table in the shallow sub-blocks of BRAMs configured as multi-ported

memories on FPGA.

 For each incoming TCAM word, the existing SRAM-based TCAM architectures

energize the entire SRAM memory of their architectures, resulting in excessive power

consumption. In this work, we present a pre-classifier-based architecture for an energy-

efficient SRAM-based TCAM design. We first classify a TCAM table into several TCAM

sub-tables, which are further partitioned vertically. Each partitioned TCAM sub-table is

implemented as a row of cascaded SRAM blocks in the proposed architecture. For each input

TCAM word, at most one row of SRAM blocks is activated in the proposed design,

significantly reducing the dynamic power consumption compared with the existing SRAM-

based TCAMs.

The demand for a high-speed flexible (re-configurable) and adaptable (easy for

integration) TCAM configurations renders the embedded memories BRAMs on modern

SRAM-based FPGAs attractive for the design of TCAMs. FPGAs implement TCAM using

SRAM, by addressing SRAM with TCAM contents, and stores information for all data of

TCAM table. Each SRAM word stores the existence and address information for a specific

TCAM pattern. Existing SRAM-based TCAMs on FPGAs suffer from higher energy

consumption as they consume excessive power to energize the entire SRAM memory used

per lookup. For example, the SRAM-based TCAM design methodologies presented in recent

works [13,17] consumed 2.5 W and 3.2 W to implement 89 kb and 150 kb TCAM tables

using BRAMs on FPGA, respectively. The higher power consumption of SRAM-based

TCAM designs becomes more severe for larger capacities.

The demand for a low power configurable and easy to integration TCAM design on

FPGA makes the use of pre-classification approach practical for designing an energy-

efficient SRAM-based TCAM (EE-TCAM). It works as follows: First, a TCAM table is

partitioned into several sub-tables of balanced size in the classification stage. Second, in the

SRAM-based implementation stage, each resultant TCAM sub-table is mapped to a separate

row of cascaded SRAM blocks in the architecture. The proposed architecture selectively

activates at most one row of SRAM blocks for each incoming TCAM word, thus attaining a

substantial reduction in the overall dynamic power consumption.

3. PROPOSED METHOD

The conventional 6T SRAM cell uses two cross coupled inverters and two access

transistors as shown in Figure 1. These access transistors connect the cell to the outside

world. The inverters are the storage element and reinforce the data bit within the cell as long

as the power is supplied (VDD).

International Journal of Engineering Technology and ManagementSciences

Website: ijetms.in Issue: 3 Volume No.6 May – 2022

DOI:10.46647/ijetms.2022.v06i03.019 ISSN: 2581-4621

120

Fig 4-1 Conventional 6T SRAM Cell

P1, P2 are PMOS transistors and N1, N2, N3, N4 are NMOS transistors. N3 and N4

are the access transistors (or pass-transistors) connecting the cell to the Bit Lines (The

different modes of operation of the SRAM cell are detailed below.

A. Standby/Hold Mode

When the Word Line (WL) is at logic ‘0’, the access transistors N3 and N4 disconnect

the cell from the Bit Lines The two cross coupled inverters in the cell

continue to reinforce the data bit present in the cell as long as power is supplied (VDD). The

current drawn in this mode from VDD is termed as standby current.

B. Write Mode

The cell gamma ratio should be sufficiently high for a successful write operation to take

place. Cell gamma ratio is defined as the ratio of the strength (drive current) of the pass

transistor (access transistor) to that of the pull up transistor. The value to be written into the

cell is applied to the Bit Lines. Complementary Bit Lines are used on either

side of the cell to ensure that the load to charge is reduced for each access transistor. This

enables us to use smaller access transistors on each side rather than one single large access

transistor. For a write operation, the Word Line (WL) is set to logic ‘1’ enabling the access

transistors N3 and N4 thereby connecting the cell to the outside world The

contents from the Bit Lines are then transferred into the cell via the access

transistors. After a successful write operation, the Word Line (WL) is set to logic ‘0’. For

example, to write logic ‘0’ into the cell, initially is set to logic ‘0’ and is set to logic ‘1’. The

Word Line (WL) is then set to logic ‘1’ thereby allowing the access transistors to pass the

logic value from into the cell After the data bit is successfully written into

the cell, the Word Line (WL) is set to logic ‘0’ thereby disconnecting the cell from the

outside world

C. Read Mode

For a successful and stable read operation, the cell beta ratio should be sufficiently

high. However, the drawback of a high beta ratio is lowered performance. Cell beta ratio is

defined as the ratio of the strength (drive current) of the pull-down transistor to that of the

pass transistor (access transistor). In order to read the data bit present in the cell, Bit Lines

are initially pre charged to VDD i.e., logic ‘1’. The Word Line (WL) is then

enabled by setting it to logic ‘1’. Depending on the data bit stored in the cell, a Bit Line

gets discharged slightly (and slowly) via an access transistor and pull-down

transistor thereby developing a differential voltage drop between the Bit Lines

International Journal of Engineering Technology and ManagementSciences

Website: ijetms.in Issue: 3 Volume No.6 May – 2022

DOI:10.46647/ijetms.2022.v06i03.019 ISSN: 2581-4621

121

 This small differential voltage drop across is then detected

by a Sense Amplifier which determines the data bit stored in the cell. Charging and

discharging of large capacitive loads is done by the Sense Amplifier. The higher the

sensitivity of the sense amplifier, the faster the read operation. However, the differential

voltage should not be too large as it could flip the state of the cross coupled inverters.

Readback scrubbing is considered as an effective mechanism to correct errors in Static-RAM

(SRAM)-based Field Programmable Gate Arrays (FPGAs). However, current solutions have

a low error correction percentage per unit area overhead. This paper proposes two new error

detection/correction mechanisms that combine frame readback scrubbing with error

correction codes (ECCs) that are applied in multiple directions, to achieve a high error

correction percentage per unit area overhead. Experiments conducted show that the proposed

schemes have an excellent error correction percentage (over 99%), especially for multi-bit

upsets, while using up to 59.37% lesser area overhead compared with other state-of-the-art.

Methodology:
A CMOS SRAM cell is made up of six MOSFETS which has lower power

consumption in standby mode and a greater immunity to transient noise and voltage variation

than 4T resistive load cell just because it is preferred over resistive load cell for high-speed

low power operation. The storage cell has two stable states denotes by 0 and 1. Other than

two inverters two additional access transistors serve to control the access to a storage cell

during read and write operations. Access to the cell is enabled by the word line (WL) which

controls the two access transistors M5 and M6 which, in-turn, control whether the cell should

be connected to the bit lines:BL and BLB.

Although it is not strictly necessary to have two bit-lines, global bit-line arrangement is

helpful to maintain the stability of the cell and reduce the voltage swing which have initial

impact on the power dissipation of the cell. Another advantage is it reduce the complexity of

the SRAM cell.

During read access, Pre-charge circuitry is used for differential sense amplifier atthe end of

the bit-line which are actively driven high and low by the inverters in theSRAM cell. This

improves SRAM bandwidth compared to DRAMs. The symmetric structure of SRAM allows

for differential signaling, which makes small voltage swings more easily detectable.

Cell has three different states:

Standby: Idle circuit

If the word line is not active, then M5 and M6 disconnect the cell from the bit lines and the

two cross coupled inverter will continue to reinforce each other as long as they are connected

to the supply.

Reading: Data has been requested

It totally depends on pre-charging concept, as both the bit-lines and word line are active high.

Sometimes a small delta delay is occurred across the bit-lines which will resolved by

attaching a sense amplifier at the end of the cell. The higher the sensitivity of sense amplifier,

the faster the speed of read operation.

Writing: Updating the contents

Whatever the value we want to write same value is applied to the bit-lines. Bit-line input

drivers are designed to be much stronger than the relatively weak transistors in the cell itself,

so that they can easily override the previous state of the cross coupled inverters. Careful

sizing of the transistors in an SRAM is needed to ensure proper operation.

Modern Static-RAM (SRAM)-based Field Programmable Gate Arrays (FPGAs) are gaining

significant importance in space applications due to their operational capacity and

performance. Moreover, these devices can be reconfigured after launch depending on various

International Journal of Engineering Technology and ManagementSciences

Website: ijetms.in Issue: 3 Volume No.6 May – 2022

DOI:10.46647/ijetms.2022.v06i03.019 ISSN: 2581-4621

122

functional requirements and changes in the device environment [1]. However, due to the

technological developments leading to denser chips, these devices become vulnerable to

radiation effects called Single Event Upsets (SEUs) that are common in space environments.

SEUs can inadvertently change the configuration of the SRAM bits, thereby changing the

functionality of the circuit implemented [2]. If SEUs affect only one bit, this effect is known

as a Single-Bit Upset (SBU) or single error. On the other hand, if several bits are

consecutively affected, this effect is known as a Multiple-Bit Upset (MBU) or burst errors

(Figure 1). Several mechanisms have been proposed to mitigate SEUs in SRAM-based

FPGAs. The most common solution explores spatial/hardware redundancy [3]. Triple

Modular Redundancy (TMR) [4] [5] replicates three times the hardware module to be

protected and votes on their outputs, identifying the right results and a possible faulty

module. However, this approach imposes a great overhead in terms of area and power

consumption. Moreover, this method does not avoid error propagation if more than one

component produces erroneous output. Duplication With Compare (DWC) [6] is an

alternative approach to reduce the TMR overhead. It compares the output results of

duplicated modules in order to identify the errors. However, it cannot correct them, but can

trigger the suitable operations to do that, such as a full re-execution. Blind scrubbing is

another traditional method of fault mitigation. This mechanism does not detect the existence

of faults, but instead, periodically rewrites the configuration frames on to the FPGA,

overwriting possible faulty bits caused by SEUs [7] [8]. An external memory with continuous

access is required to store the configuration frames, frequently called as golden copy. In order

to minimize the faults’ impact, the scrubbing frequency must be greater than the expected

SEU frequency. However, determining this frequency requires in advance a deep knowledge

about fault susceptibility of the device technology, as well as the environmental conditions to

which it would be exposed. The balance between error correction and the overhead required

has been a challenging problem faced by researchers. This paper proposes two new error

correction schemes based on frame readback and ECCs. Depending on the balance of error

correction required and area overhead acceptable, one of the proposed solutions can be used.

The proposed schemes detect and correct errors in each individual frame of the FPGA by

mapping each frame to a 2D matrix and then computing hamming or parity bits for the matrix

in different directions (rows, columns and diagonals). The mechanism adopted for computing

the ECCs ensures a very good error correction performance, especially for burst errors and

also uses lesser area overhead as compared with other state-of-the-art.

SOFT ERRORS in SRAM:

Technology scaling dramatically increases the sensitivity of the semiconductor

devices to radiation. Due to large number of cells with minimized dimensions, SRAM arrays

often are the densest circuitry on a chip. The large bit count contributes to the probability that

an ionizing particle will hit a sensitive node in the array and corrupt the stored data. The

minimum layout dimensions reduce the storage node capacitance and thus, the critical charge

Qcrit that can be injected by radiation and upset the SRAM cell.

The shrinking supply voltages reduce the Qcrit even further. These factors contribute

to the radiation-induced data errors that complicate building reliable SRAM arrays in nano-

scaled technologies. Radiation can create localized ionization events in the semiconductor

devices either directly or as secondary reaction products. Many of these radiation-induced

events create enough electron-hole pairs to upset the storage nodes of SRAM cells. Such an

upset is called a “soft” error. While such an upset can cause a data error, the device structures

are not permanently damaged. If the voltage disturbance on a storage node of an SRAM cell

is smaller than the noise margin of that node, the cell will continue to operate properly

maintaining its data integrity.

International Journal of Engineering Technology and ManagementSciences

Website: ijetms.in Issue: 3 Volume No.6 May – 2022

DOI:10.46647/ijetms.2022.v06i03.019 ISSN: 2581-4621

123

However, if the noise margin of a cell is not sufficient to withstand the disturbance

caused by ionizing radiation, a “soft” error will result. Soft errors originally were discovered

to be a problem for DRAMs with planar storage capacitors in the late 1970s. Such capacitors

stored their charge in large area two-dimensional p-n junctions. Due to the high collection

efficiency of the radiation-induced charge, the large planar reverse-biased junctions made

early DRAM cells highly susceptible to soft errors. Technology scaling and the push to

improve the high soft error rate (SER) and poor pause/refresh time ratios of DRAMs

necessitated the development of more compact three-dimensional storage capacitors.

Compared to the old 2D planar capacitors, the new 3D capacitors had significantly smaller

junction collection efficiency due to the reduced volume of the p/n junction. Despite the

reduction of the Qcrit of a DRAM cell due to VDDscaling, it was more than compensated by

the aggressive junction volume scaling of the storage capacitor. As a result, the SER of a

DRAM bit cell is reducing by about 4x per technology generation.

 This DRAM SER reduction is, however, being offset by the similar DRAM bit count

growth rate at a system level. Because larger DRAM arrays are statistically more susceptible

to soft errors, the resulting DRAM SER at the system level has remained relatively stable

over many recent technology generations. Early SRAMs were more robust to soft errors than

DRAMs due to the feedback mechanism that helps to maintain the state of an SRAM cell. In

an SRAM cell both the capacitance of the storage node and the restoring current provided by

the pull-up or driver transistors contribute to the cell critical charge.

With technology scaling, the SRAM cell area and thus, the junction area of the

storage nodes are shrinking (Fig S1). While it could reduce the cell junction leakage, it also

reduced the storage node capacitance. Simultaneously, the transition from the constant

voltage scaling to the constant electric field scaling resulted in aggressive VDD scaling. Both

these factors directly contribute to the reduction of the resulting Qcrit and the increasing

probability of soft errors leading to higher SER levels. With each successive technology

generation, the reductions in cell collection efficiency due to shrinking cell depletion volume

was compensated by the reductions of VDD and storage node capacitance.

Therefore, soft errors have recently become a growing issue in ultra-high densitylarge

embedded SRAMs operating at low voltages. The SRAM bit SER is shown to have saturated

for technology nodes beyond 0.25 µm due to the saturation in VDD scaling, reductions in

junction collection efficiency of highly doped p-n junctions and the increased charge sharing

between the neighboring nodes. However, the exponential growth of SRAM cell count in

modern CPUs and DSP processors has led the SRAM system SER to increase with each

technology generation.

International Journal of Engineering Technology and ManagementSciences

Website: ijetms.in Issue: 3 Volume No.6 May – 2022

DOI:10.46647/ijetms.2022.v06i03.019 ISSN: 2581-4621

124

Fig :The normalized junction volume and capacitance of SRAM storage nodes and the power

supply voltage VDD scaling as a function of the technology generation.

Readback scrubbing has been seen by the researchers as an effective mechanism to provide

error correction in SRAM-based FPGAs [10]–[14]. Three categories of readback scrubbers

can be found in the literature. The first category enables fault detection with a direct

comparison between read frames and the golden copy [13]. The fault is corrected by

overwriting the faulty frame with the respective golden copy frame. The second category

does not use an exhaustive comparison with the golden copy [14]. It detects the faults

matching the online computed error detection codes (EDCs) with the original ones,

previously computed and externally stored for each frame. Similar to the previous category,

the fault recovery is performed using the frame’s golden copy. The third category enables the

fault detection, computing ECCs for each frame [10]–[12]. The ECCs allow the faults’

detection, similar to the previous category. However, upon fault detection in a frame, the

faults can be easily recovered using the ECCs. Once the fault is recovered, the frame is

written back into the FPGA. Different error detection schemes, combined with different

ECCs have been proposed in the literature. However, they are not really efficient to handle

burst errors. Lanuzza et al. [12] proposes a scheme to correct burst errors in SRAM-based

FPGAs by applying hamming codes to a data word obtained by frame bit interleaving. The

bit interleaving technique reduces the probability to have several bit-faults in the same data

word, thereby increasing the correction efficiency. However, the error correction is limited by

the amount of bit interleaving, and hence might not be suitable if a very high error correction

efficiency is required. Argyrides et al. [10] introduce a scheme called Matrix Code (MC), that

uses hamming codes combined with parity codes to enable the detection and correction of

multiple errors in an FPGA configuration frame. A frame word is mapped into a matrix of

sub words. Errors are corrected by computing hamming codes for each row, providing Single

Error Correction Double Error Detection (SECDED) and computing parity codes for each

column. As a result, this scheme is not efficient in handling MBUs, since if more than two

errors occur in the same row, they are not detected by the ECC code. Park et al. [11] propose

a built-in 2-D Hamming Product Code (2-D HPC) scheme. This technique is able to perform

SECDED by using hamming codes built from arranging the FPGA configuration frame in a

International Journal of Engineering Technology and ManagementSciences

Website: ijetms.in Issue: 3 Volume No.6 May – 2022

DOI:10.46647/ijetms.2022.v06i03.019 ISSN: 2581-4621

125

2-D array. Therefore, hamming codes are computed for each row and for each column of the

2-D array. Like the previous work, this scheme is not able to detect more than two errors that

occur in the same row or column, and hence not efficient in handling burst errors.

proposes two novel schemes for error detection and correction in SRAM-based FPGAs, using

the readback scrubbers. Both these schemes are based on existing ECCs, i.e., parity codes and

hamming codes, which are applied to the FPGA frames. A frame is the lowest reconfigurable

granularity that can be found in an FPGA. In particular, the FPGA configuration data frames

F Rc contain information about the circuit design to be implemented on the FPGA. These

schemes map sequentially the content of each frame fri ∈ F Rc in a 2D data matrix mfri with

nr rows and nc columns. ECC codes are then computed for this 2D data matrix and stored in

an internal or external storage. During runtime, the frames are periodically read and mapped

to the 2D data matrix to see if they contain any errors. Errors are identified by comparing the

ECCs to the ones stored in the memory. In the case of an error, the proposed algorithm

attempts to rectify the affected bits. Once the errors are rectified, the corrected frame is then

written back into the FPGA board.

Fig. ECCs used in H3 scheme.

Error Model There are two different error models considered for this work. Both these

models focus on SEUs, i.e., transient soft errors due to a single particle strike and which

affect the configuration (both the logic and routing) bits of the FPGAs. The first model

considers SBUs (single errors) and the second considers MBUs (burst errors). Both error

models are illustrated in Figure 1. According to the literature, the latter model is more

realistic since it is very common that a single particle strike might affect one or more

neighboring bits [12]. We try to detect and correct both single errors as well as burst errors in

this work. The following sub-sections discuss these schemes in detail with examples to

illustrate the working of each. B. H3 Scheme H3 scheme applies hamming codes to the frame

matrix at the design time in three directions, rows, columns and in one of the diagonals as

shown in the Figure 2. With this scheme, single error correction (SEC) is available for each

row rj ∈ mfri, for each column cj ∈ mfri and for each line of one of the diagonals dj ∈ mfri.

International Journal of Engineering Technology and ManagementSciences

Website: ijetms.in Issue: 3 Volume No.6 May – 2022

DOI:10.46647/ijetms.2022.v06i03.019 ISSN: 2581-4621

126

The pseudocode presented in Algorithm 1 illustrates the H3 scheme behavior. The matrix

frame is received as input and SEC is sequentially applied to the rows, columns and diagonal.

While errors are detected in the matrix frame, SEC is continuously applied. When no errors

are detected the mfri is returned. Figure 3 illustrates the working of the H3 scheme. In the

first iteration, the algorithm computes the hamming codes for the rows, columns and

diagonals respectively and compares it to the ones already stored in memory. As can be seen

from the figure, errors are found in rows 2 and 7 (matrix A1), columns 1, 2, 4, and 6 (matrix

A2) and diagonal 2 and −3 (matrix A3). These error bits are highlighted in yellow color. All

the errors are corrected at the end of the first iteration.

International Journal of Engineering Technology and ManagementSciences

Website: ijetms.in Issue: 3 Volume No.6 May – 2022

DOI:10.46647/ijetms.2022.v06i03.019 ISSN: 2581-4621

127

ECC Overhead: By definition, for SEC, the number of hamming bits h required for a n-bit

word is given by the equation, n +1+ h ≤ 2h. This way, the ECC overhead can be given by

Equation 1, H3oh = nd j=1 hdj + (nr × hr)+(nc × hc) (1) where, hdj , the number of hamming

bits for each diagonal j, is given by |dj | +1+ hdj ≤ 2hdj ; hr, the number of hamming bits for

the rows, is given by nc +1+ hr ≤ 2hr; hc, the number of hamming bits for the columns, is

given by nr +1+hc ≤ 2hc; nd, the number of diagonals of the matrix, is given by nd = nr + nc

− 1; dj is the set of elements of the diagonal j.

P2H Scheme P2H scheme provides error detection and correction through the use of both

parity and hamming codes. Parity codes are applied for each row rj ∈ mfri and for each

column cj ∈ mfri, while hamming codes are applied for each line of one of the diagonals dj ∈

mfri, as shown in Figure 4. Since parity code can only detect the presence of a single error,

this scheme also employs an efficient algorithm to not only detectThe first operation detects

and corrects any single-bit error for each diagonal dj ∈ mfri through the function sec (dj).

This first operation can be observed in Figure 6 (A1 − A2). Note the frame burst errors can be

easily corrected on this first operation. Once all the single bit errors in the diagonals are

removed, it is not possible to correct any more errors using only a single direction. Therefore,

the next operation set identifies the diagonals, rows and columns with errors and matches

International Journal of Engineering Technology and ManagementSciences

Website: ijetms.in Issue: 3 Volume No.6 May – 2022

DOI:10.46647/ijetms.2022.v06i03.019 ISSN: 2581-4621

128

them in order to identify their exact location. ded(dj) identifies the diagonals with double

errors, through the hamming codes. ped (rj) and ped(cj) identify the rows and the columns

with errors, through the parity codes. These locations are submitted to the function eci, which

match them and produce a set of intersections in the matrix frame. These intersections are

potential bit errors. This way, several operations are then performed to identify and correct

the errors. Figure 5 presents a flowchart, which describes the operation flow performed by

P2H scheme. In particular, the shaded area describes the operation flow performed in the

scope of eci function.

4. CONCLUSION

In this brief, a technique to protect the SRAMs used to emulate TCAMs on FPGAs

has been proposed. The scheme is based on the observation that not all values are possible in

those SRAMs, and thus, there is some intrinsic redundancy of the memory contents. This

redundancy is used to correct most single-bit error patterns when the memories are protected

with a parity bit to detect errors. The proposed technique reduces significantly the resources

needed to protect the memories and can be an interesting option for designs on which

reliability is a concern, but resources are limited.The idea presented in this brief can be

extended to other memory configurations. For example, it can be used to detect errors on an

unprotected memory by periodically scrubbing the contents to check their correctness. It

could also be used when the memory is protected with a more powerful code that can detect

several bit errors to correct multiple bit errors. For example, for a memory protected with an

SEC code, double-bit error patterns could be detected and then use the intrinsic redundancy

of the memory contents to correct them.

5. REFERENCES

[1] N. Kanekawa, E. H. Ibe, T. Suga, and Y. Uematsu, Dependability in Electronic Systems:

Mitigation of Hardware Failures, Soft Errors, and Electro-Magnetic Disturbances. New York,

NY, USA: Springer-Verlag,

2010.

[2] J. L. Autran et al., “Soft-errors induced by terrestrial neutrons and natural alpha-particle

emitters in advanced memory circuits at ground level,” Microelectron. Rel., vol. 50, no. 9, pp.

1822–1831, Sep. 2010.

[3] A. L. Silburt, A. Evans, I. Perryman, S. J. Wen, and D. Alexandrescu, “Design for soft error

resiliency in Internet core routers,” IEEE Trans. Nucl. Sci., vol. 56, no. 6, pp. 3551–3555,

Dec. 2009.

International Journal of Engineering Technology and ManagementSciences

Website: ijetms.in Issue: 3 Volume No.6 May – 2022

DOI:10.46647/ijetms.2022.v06i03.019 ISSN: 2581-4621

129

[4] A. Evans, S.-J. Wen, and M. Nicolaidis, “Case study of SEU effects in a network processor,”

in Proc. IEEE Workshop Silicon Errors Logic-Syst. Effects (SELSE), Mar. 2012, pp. 1–7.

[5] C. L. Chen and M. Y. Hsiao, “Error-correcting codes for semiconductor memory

applications: A state-of-the-art review,” IBM J. Res. Develop., vol. 28, no. 2, pp. 124–134,

Mar. 1984.

[6] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable mem- ory (CAM) circuits and

architectures: A tutorial and survey,” IEEE J. Solid-State Circuits, vol. 41, no. 3, pp. 712–

727, Mar. 2006.

[7] F. Yu, R. H. Katz, and T. V. Lakshman, “Efficient multimatch packet classification and

lookup with TCAM,” IEEE Micro, vol. 25, no. 1, pp. 50–59, Jan./Feb. 2005.

[8] P. Bosshart et al., “Forwarding metamorphosis: Fast programmable match-action processing

in hardware for SDN,” in Proc. ACM SIG-COMM, 2013, pp. 99–110.

[9] I. Syafalni, T. Sasao, and X. Wen, “A method to detect bit flips in a soft-error resilient

TCAM,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 6, pp. 1185–

1196, Jun. 2018.

[10] S. Pontarelli, M. Ottavi, A. Evans, and S. Wen, “Error detection in ternary CAMs using

Bloom filters,” in Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE), Mar. 2013, pp.

1474–1479.

[11] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore, “NetFPGA SUME:

Toward 100 Gbps as research commodity,” IEEE Micro, vol. 34, no. 5, pp. 32–41, Sep./Oct.

2014.

[12] Naik, S.B., Mahesh, B. and Koilakuntla, K.D., 2021. Evaluating Malware Detection

System using Machine Learning Algorithms.

[13] W. Jiang, “Scalable ternary content addressable memory implementation

using FPGAs,” in Proc. ACM ANCS, San Jose, CA, USA, Oct. 2013, pp. 71–82.

[14] Z. Ullah, M. K. Jaiswal, and R. C. C. Cheung, “E-TCAM: An efficient

SRAM-based architecture for TCAM,” Circuits, Syst., Signal Process., vol. 33, no. 10, pp.

3123–3144, Oct. 2014.

[15] A. Ahmed, K. Park, and S. Baeg, “Resource-efficient SRAM-based ternary content

addressable memory,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 25, no. 4, pp. 1583–1587, Apr. 2017.

[16] Mahesh, B. "Cost Optimization Techniques in Cloud Computing [J]." International Journal

of Computer Sciences & Engineering 6.1 (2018): 375-380.

[17] Ternary Content Addressable Memory (TCAM) Search IP for SDNet: SmartCORE IP

Product Guide, PG190 (v1.0), Xilinx, San Jose, CA, USA, Nov. 2017.

[18] V. Gherman and M. Cartron, “Soft-error protection of TCAMs based on ECCs and

asymmetric SRAM cells,” Electron. Lett., vol. 50, no. 24, pp. 1823–1824, 2014.

	(a) (b) (c)
	Fig. 1 Effects of TCAM soft

