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Abstract: Ternary content addressable memories (TCAMs) are widelyused in network devices to implement 

packet classification. They are used, for example, for packet forwarding, for security, and to implement 

software-defined networks (SDNs). TCAMs are commonly implemented as standalone devices or as an 

intellectual property block that is integrated on networking application-specific integrated circuits. On the other 

hand, field-programmable gate arrays (FPGAs) do not include TCAM blocks. However, the flexibility of FPGAs 

makes them attractive for SDN implementations, and most FPGA vendors provide development kits for SDN. 

Those need to support TCAM functionality and, therefore, there is a need to emulate TCAMs using the logic 

blocks available in the FPGA. In recent years, a number of schemes to emulate TCAMs on FPGAs have been 

proposed. Some of them take advantage of the large number of memory blocks available inside modern FPGAs 

to use them to implement TCAMs. A problem when using memories is that they can be affected by soft errors 

that corrupt the stored bits. The memories can be protected with a parity check to detect errors or with an error 
correction code to correct them, but this requires additional memory bits per word. In this brief, the protection 

of the memories used to emulate TCAMs is considered. In particular, it is shown that by exploiting the fact that 

only a subset of the possible memory contents are valid, most single-bit errors can be corrected when the 

memories are protected with a parity bit. 

Keywords: Field-programmable gate arrays (FPGA), soft errors, ternary content addressable memories 

(TCAM) 

1. INTRODUCTION 

Ternary Content Addressable Memory (TCAM) is a special type of memory. For random 

access memory (RAM), a bit has only two possible values (i.e., 0 or 1), and the input is the 

index and the output is the content of the memory at that index. Whereas, a bit in TCAM 

has three possible values: 0, 1, or *, where * means ‘‘don’t care’’. Each entry in TCAMs is 

an array of 0s, 1s, or *s. TCAMs work in a reverse manner as compared to RAMs: the 

input to a TCAM chip is a packet header (i.e., a search key) of 0s and 1s, and the output is 

the index of the first entry that the key matches where decisions are stored [1]. A search 

key matches an entry if and only if their bits of 0s and 1s match. For example, 1,001 

matches a TCAM entry 10**. Furthermore, a TCAMs searches the entire memory in one 

operation, so it is considerably faster than RAMs. In essence, a TCAM is a parallel search 

machine, not just memory. 

TCAMs are the core component of many networking devices such as routers, switches, 

firewalls and intrusion detection/prevention systems. One major task performed by TCAMs 

is packet classification, the processing of finding the first rule that a given packet matches 

in a rule list. In TCAM-based packet classification, rules are stored in the TCAM in 

ternary format. Thus, when a packet comes, only one TCAM lookup is needed. The result 

of the TCAM lookup is the index in the memory where packet decisions, such as accept or 

drop, are stored. This superior constant lookup performance is the key reason that many 

networking devices use TCAMs to implement their lookup operations. 

A TCAM bit may flip to any of the other two values of 0, 1, or * due to environmental 

impacts. Memory and electronics in general are susceptible to non- persistent faults, called 

soft errors, due to radiation events that generate enough electricity to cause a bit to flip in 

memory or for a transistor to trigger or fail to trigger [2, 3]. TCAMs are even more 

susceptible to soft errors than RAMs because of much higher circuit density [4]. 

Furthermore, the soft errors in TCAMs are more damaging than the soft errors in RAMs. 

While a soft error in RAM only causes one lookup to fail, a soft error in a TCAM chip can 

cause many different lookups to fail due to the first matching semantics: the lookup result 
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of a search key is the index of the first entry that the key matches [5]. For example, if a 

TCAM entry ‘‘1**’’ changes to ‘‘100’’, then the lookup results of the three keys ‘‘101’’, 

‘‘110’’, and ‘‘111’’ may become erroneous. In fact, a single erroneous entry in a TCAM 

can cause 100 % of search keys to have erroneous lookup results in the worst case. TCAMs 

are increasingly prone to more soft errors as the area efficiency of memory devices 

decreases [5]. Furthermore, Mastipuram et al. [5] reported that soft errors induced the 

highest failure rate of all other reliability mechanisms combined in TCAMs. Consequently, 

it is important to ensure reliability in TCAM operations because soft errors can potentially 

jeopardize their application in mission-critical network management applications. 

Figure 1 shows different effects of soft errors in TCAMs. Note that the index returned by 

an erroneous lookup may be smaller or greater than the index returned by a correct lookup. 

Figure 1a shows an example TCAM table without errors, on which the lookup result for 

search key 0010 is the second entry. Figure 1b shows an implementation of the table in Fig. 

1a where the last bit in the first entry is flipped from 1 to 0. On this table, the lookup result 

for search key 0010 is the first entry. Figure 1c shows an implementation of the table in 

Fig. 1a where the third bit in the second entry is flipped from * to 0. On this table, the the 

lookup result for search key 0010 is the third entry. Moreover, some soft errors do not affect 

the lookup result of any search key in a TCAM. For example, the first bit in the fourth entry 

in Fig. 1c erroneously flipped from * to 1. However, this error does not affect any lookup. 

In this paper, we do not consider such benign errors as they cause no harm. In the rest of 

this paper, the term TCAM errors refers to harmful TCAM errors. 
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Fig. 1 Effects of TCAM soft 

2. RELATED WORK 

RAM-based associative content-addressable memory (CAM) was presented in a U.S. 

patent. Its memory requirement increases exponentially with the increase in the pattern bits of 

CAM. For large bit patterns, it does not scale well in terms of the memory requirement, 

power consumption, and cost. Thus, it is not feasible to implement it on ASIC or FPGA 

platforms. Contrary to this our proposed work is memory-efficient and achieves a reduction 

in the dynamic power consumption by reducing the exponential increase in RAM memory to 

a linear increase. This is achieved by partitioning the large width TCAM bit patterns and then 

implementing them as a cascade of SRAM blocks in the proposed architecture.  

A set-associative memory architecture implemented in hardware using the well-

known hashing method was presented in. It used RAM memory to implement CAM. 

However, in order to support TCAM functionality, the architecture suffered from inefficient 

memory utilization as it required two bits to encode ternary bits. On the contrary, our 

proposed solution does not encode ternary bits as two bits. The proposed solution addresses 

RAM memory with TCAM content, and each RAM word corresponds to a specific TCAM 

data pattern. In order to implement “don’t care” bits, more than one RAM word is selected. 
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The proposed solution maps all possible TCAM data as RAM addresses. Two types of FPGA 

implementations: a CAM based on Xilinx BRAM resource and a TCAM based on 16-bit shift 

registers (SRL16E)-are presented in Xilinx application note [20]. This emulation of TCAM 

on FPGA consumes one SRL16E for implementing two bits of TCAM. The shift register 

based TCAM works efficiently for smaller TCAMs whereas, for implementing large storage 

capacity TCAMs, its design experience routing congestion and timing challenges. 

 The proposed solution implements TCAM using the embedded SRAM memory 

blocks available on FPGAs and scales well in terms of speed and power consumption for 

implementing TCAMS of large storage capacity. A low-power SRAM-based CAM design 

implementation on FPGA was presented in a previous work [17]. It performs a hierarchical 

lookup of the design-configured SRAM blocks. It achieves low power consumption by 

stopping subsequent SRAM lookup operations if a match is found in the present SRAM 

block. Although it reduces the average power consumption of the design, its worst-case 

power consumption remains high, which is not beneficial for the designed hardware as the 

hardware is designed based on the worst-case power consumption budget. In contrast, 

proposed work achieves a significant reduction in the worst-case power consumption of the 

implemented TCAM design. 

 Algorithmic solutions of TCAM implemented in SRAM-based pipelines on FPGAs 

suffer from non-deterministic throughput, long latencies, and inefficient memory usage. A 

resource-efficient SRAM-based TCAM design was presented in, which stored the validation 

information of the TCAM words in distributed RAM blocks and the address information in 

the sub-blocks of the embedded SRAM memory blocks on FPGA. It completed the lookup 

operation for the incoming TCAM word via multiple high-speed sequential reads from the 

sub-blocks of its SRAM blocks and thus resulted in a degraded system throughput. The 

multiple high-frequency SRAM read operations per input word’s lookup resulted in higher 

dynamic power consumption of the design. Proposed work stores the validation and address 

information of the TCAM words in a single SRAM memory block and a single read 

operation is performed for completing the incoming TCAM word’s lookup. Thus, achieves 

higher throughput with reduced overall power consumption.  

The design methodologies presented in employs multiple distinct SRAM blocks for 

implementing TCAM functionality. These stores the TCAM word’s existence and address 

information separately in distinct sets of SRAM blocks. The Input TCAM word is applied to 

the first set of SRAM blocks to read its existence information and the address information is 

read from the second set of SRAM blocks. These TCAM design methodologies using 

multiple distinct SRAM blocks utilizes excessive SRAM memory. These works suffered 

from higher power consumption as the entire used excessive SRAM memory is activated for 

the incoming TCAM word lookup. In contrast, our proposed work stores the TCAM word’s 

existence and address information in a single RAM, thus realizing efficient memory usage. 

Moreover, proposed work achieves substantially reduced power consumption by activating at 

most one row of SRAM blocks for incoming TCAM words.  

The SRAM-based design methodology with efficient storage efficiency in previous 

work stored the existence and address information of TCAM word in a single SRAM 

memory block. A similar approach implemented an SRAM-based TCAM design using Xilinx 

BRAM or distributed RAM resource and provided an in-depth theoretical analysis in. 

However, these works energize all used SRAM memory blocks in the design for each 

incoming TCAM word’s lookup. Thus, consumes higher power consumption. In contrast 

proposed TCAM architecture selectively energizes a part of SRAM memory blocks used, 

achieving a substantial reduction in the overall dynamic power consumption of the design.  

A recent work presented in uses multi-pumping enabled multi-ported SRAM memory 

for implementing memory efficient TCAM design on FPGA. It stores the sub-blocks of 
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partitioned TCAM table in the shallow sub-blocks of BRAMs configured as multi-ported 

memories on FPGA. 

 For each incoming TCAM word, the existing SRAM-based TCAM architectures 

energize the entire SRAM memory of their architectures, resulting in excessive power 

consumption. In this work, we present a pre-classifier-based architecture for an energy-

efficient SRAM-based TCAM design. We first classify a TCAM table into several TCAM 

sub-tables, which are further partitioned vertically. Each partitioned TCAM sub-table is 

implemented as a row of cascaded SRAM blocks in the proposed architecture. For each input 

TCAM word, at most one row of SRAM blocks is activated in the proposed design, 

significantly reducing the dynamic power consumption compared with the existing SRAM-

based TCAMs. 

The demand for a high-speed flexible (re-configurable) and adaptable (easy for 

integration) TCAM configurations renders the embedded memories BRAMs on modern 

SRAM-based FPGAs attractive for the design of TCAMs. FPGAs implement TCAM using 

SRAM, by addressing SRAM with TCAM contents, and stores information for all data of 

TCAM table. Each SRAM word stores the existence and address information for a specific 

TCAM pattern. Existing SRAM-based TCAMs on FPGAs suffer from higher energy 

consumption as they consume excessive power to energize the entire SRAM memory used 

per lookup. For example, the SRAM-based TCAM design methodologies presented in recent 

works [13,17] consumed 2.5 W and 3.2 W to implement 89 kb and 150 kb TCAM tables 

using BRAMs on FPGA, respectively. The higher power consumption of SRAM-based 

TCAM designs becomes more severe for larger capacities. 

The demand for a low power configurable and easy to integration TCAM design on 

FPGA makes the use of pre-classification approach practical for designing an energy-

efficient SRAM-based TCAM (EE-TCAM). It works as follows: First, a TCAM table is 

partitioned into several sub-tables of balanced size in the classification stage. Second, in the 

SRAM-based implementation stage, each resultant TCAM sub-table is mapped to a separate 

row of cascaded SRAM blocks in the architecture. The proposed architecture selectively 

activates at most one row of SRAM blocks for each incoming TCAM word, thus attaining a 

substantial reduction in the overall dynamic power consumption. 

 

3. PROPOSED METHOD 

The conventional 6T SRAM cell uses two cross coupled inverters and two access 

transistors as shown in Figure 1. These access transistors connect the cell to the outside 

world. The inverters are the storage element and reinforce the data bit within the cell as long 

as the power is supplied (VDD). 
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Fig 4-1 Conventional 6T SRAM Cell 

P1, P2 are PMOS transistors and N1, N2, N3, N4 are NMOS transistors. N3 and N4 

are the access transistors (or pass-transistors) connecting the cell to the Bit Lines (The 

different modes of operation of the SRAM cell are detailed below. 

A. Standby/Hold Mode 

When the Word Line (WL) is at logic ‘0’, the access transistors N3 and N4 disconnect 

the cell from the Bit Lines  The two cross coupled inverters in the cell 

continue to reinforce the data bit present in the cell as long as power is supplied (VDD). The 

current drawn in this mode from VDD is termed as standby current. 

B. Write Mode 

The cell gamma ratio should be sufficiently high for a successful write operation to take 

place. Cell gamma ratio is defined as the ratio of the strength (drive current) of the pass 

transistor (access transistor) to that of the pull up transistor. The value to be written into the 

cell is applied to the Bit Lines. Complementary Bit Lines are used   on either 

side of the cell to ensure that the load to charge is reduced for each access transistor. This 

enables us to use smaller access transistors on each side rather than one single large access 

transistor. For a write operation, the Word Line (WL) is set to logic ‘1’ enabling the access 

transistors N3 and N4 thereby connecting the cell to the outside world  The 

contents from the Bit Lines  are then transferred into the cell via the access 

transistors. After a successful write operation, the Word Line (WL) is set to logic ‘0’. For 

example, to write logic ‘0’ into the cell, initially is set to logic ‘0’ and is set to logic ‘1’. The 

Word Line (WL) is then set to logic ‘1’ thereby allowing the access transistors to pass the 

logic value from into the cell   After the data bit is successfully written into 

the cell, the Word Line (WL) is set to logic ‘0’ thereby disconnecting the cell from the 

outside world  

C. Read Mode 

For a successful and stable read operation, the cell beta ratio should be sufficiently 

high. However, the drawback of a high beta ratio is lowered performance. Cell beta ratio is 

defined as the ratio of the strength (drive current) of the pull-down transistor to that of the 

pass transistor (access transistor). In order to read the data bit present in the cell, Bit Lines 

are initially pre charged to VDD i.e., logic ‘1’. The Word Line (WL) is then 

enabled by setting it to logic ‘1’. Depending on the data bit stored in the cell, a Bit Line 

gets discharged slightly (and slowly) via an access transistor and pull-down 

transistor thereby developing a differential voltage drop between the Bit Lines 
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 This small differential voltage drop across  is then detected 

by a Sense Amplifier which determines the data bit stored in the cell. Charging and 

discharging of large capacitive loads is done by the Sense Amplifier. The higher the 

sensitivity of the sense amplifier, the faster the read operation. However, the differential 

voltage should not be too large as it could flip the state of the cross coupled inverters. 

Readback scrubbing is considered as an effective mechanism to correct errors in Static-RAM 

(SRAM)-based Field Programmable Gate Arrays (FPGAs). However, current solutions have 

a low error correction percentage per unit area overhead. This paper proposes two new error 

detection/correction mechanisms that combine frame readback scrubbing with error 

correction codes (ECCs) that are applied in multiple directions, to achieve a high error 

correction percentage per unit area overhead. Experiments conducted show that the proposed 

schemes have an excellent error correction percentage (over 99%), especially for multi-bit 

upsets, while using up to 59.37% lesser area overhead compared with other state-of-the-art. 

Methodology: 
A CMOS SRAM cell is made up of six MOSFETS which has lower power 

consumption in standby mode and a greater immunity to transient noise and voltage variation 

than 4T resistive load cell just because it is preferred over resistive load cell for high-speed 

low power operation. The storage cell has two stable states denotes by 0 and 1. Other than 

two inverters two additional access transistors serve to control the access to a storage cell 

during read and write operations. Access to the cell is enabled by the word line (WL) which 

controls the two access transistors M5 and M6 which, in-turn, control whether the cell should 

be connected to the bit lines:BL and BLB.  

Although it is not strictly necessary to have two bit-lines, global bit-line arrangement is 

helpful to maintain the stability of the cell and reduce the voltage swing which have initial 

impact on the power dissipation of the cell. Another advantage is it reduce the complexity of 

the SRAM cell. 

During read access, Pre-charge circuitry is used for differential sense amplifier atthe end of 

the bit-line which are actively driven high and low by the inverters in theSRAM cell. This 

improves SRAM bandwidth compared to DRAMs. The symmetric structure of SRAM allows 

for differential signaling, which makes small voltage swings more easily detectable. 

 

Cell has three different states: 

Standby: Idle circuit  

If the word line is not active, then M5 and M6 disconnect the cell from the bit lines and the 

two cross coupled inverter will continue to reinforce each other as long as they are connected 

to the supply.   

Reading: Data has been requested  

It totally depends on pre-charging concept, as both the bit-lines and word line are active high. 

Sometimes a small delta delay is occurred across the bit-lines which will resolved by 

attaching a sense amplifier at the end of the cell. The higher the sensitivity of sense amplifier, 

the faster the speed of read operation.   

 

Writing: Updating the contents  

Whatever the value we want to write same value is applied to the bit-lines. Bit-line input 

drivers are designed to be much stronger than the relatively weak transistors in the cell itself, 

so that they can easily override the previous state of the cross coupled inverters. Careful 

sizing of the transistors in an SRAM is needed to ensure proper operation. 

Modern Static-RAM (SRAM)-based Field Programmable Gate Arrays (FPGAs) are gaining 

significant importance in space applications due to their operational capacity and 

performance. Moreover, these devices can be reconfigured after launch depending on various 
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functional requirements and changes in the device environment [1]. However, due to the 

technological developments leading to denser chips, these devices become vulnerable to 

radiation effects called Single Event Upsets (SEUs) that are common in space environments. 

SEUs can inadvertently change the configuration of the SRAM bits, thereby changing the 

functionality of the circuit implemented [2]. If SEUs affect only one bit, this effect is known 

as a Single-Bit Upset (SBU) or single error. On the other hand, if several bits are 

consecutively affected, this effect is known as a Multiple-Bit Upset (MBU) or burst errors 

(Figure 1). Several mechanisms have been proposed to mitigate SEUs in SRAM-based 

FPGAs. The most common solution explores spatial/hardware redundancy [3]. Triple 

Modular Redundancy (TMR) [4] [5] replicates three times the hardware module to be 

protected and votes on their outputs, identifying the right results and a possible faulty 

module. However, this approach imposes a great overhead in terms of area and power 

consumption. Moreover, this method does not avoid error propagation if more than one 

component produces erroneous output. Duplication With Compare (DWC) [6] is an 

alternative approach to reduce the TMR overhead. It compares the output results of 

duplicated modules in order to identify the errors. However, it cannot correct them, but can 

trigger the suitable operations to do that, such as a full re-execution. Blind scrubbing is 

another traditional method of fault mitigation. This mechanism does not detect the existence 

of faults, but instead, periodically rewrites the configuration frames on to the FPGA, 

overwriting possible faulty bits caused by SEUs [7] [8]. An external memory with continuous 

access is required to store the configuration frames, frequently called as golden copy. In order 

to minimize the faults’ impact, the scrubbing frequency must be greater than the expected 

SEU frequency. However, determining this frequency requires in advance a deep knowledge 

about fault susceptibility of the device technology, as well as the environmental conditions to 

which it would be exposed. The balance between error correction and the overhead required 

has been a challenging problem faced by researchers. This paper proposes two new error 

correction schemes based on frame readback and ECCs. Depending on the balance of error 

correction required and area overhead acceptable, one of the proposed solutions can be used. 

The proposed schemes detect and correct errors in each individual frame of the FPGA by 

mapping each frame to a 2D matrix and then computing hamming or parity bits for the matrix 

in different directions (rows, columns and diagonals). The mechanism adopted for computing 

the ECCs ensures a very good error correction performance, especially for burst errors and 

also uses lesser area overhead as compared with other state-of-the-art. 

SOFT ERRORS in SRAM: 

Technology scaling dramatically increases the sensitivity of the semiconductor 

devices to radiation. Due to large number of cells with minimized dimensions, SRAM arrays 

often are the densest circuitry on a chip. The large bit count contributes to the probability that 

an ionizing particle will hit a sensitive node in the array and corrupt the stored data. The 

minimum layout dimensions reduce the storage node capacitance and thus, the critical charge 

Qcrit that can be injected by radiation and upset the SRAM cell.  

The shrinking supply voltages reduce the Qcrit even further. These factors contribute 

to the radiation-induced data errors that complicate building reliable SRAM arrays in nano-

scaled technologies. Radiation can create localized ionization events in the semiconductor 

devices either directly or as secondary reaction products. Many of these radiation-induced 

events create enough electron-hole pairs to upset the storage nodes of SRAM cells. Such an 

upset is called a “soft” error. While such an upset can cause a data error, the device structures 

are not permanently damaged. If the voltage disturbance on a storage node of an SRAM cell 

is smaller than the noise margin of that node, the cell will continue to operate properly 

maintaining its data integrity.  
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However, if the noise margin of a cell is not sufficient to withstand the disturbance 

caused by ionizing radiation, a “soft” error will result. Soft errors originally were discovered 

to be a problem for DRAMs with planar storage capacitors in the late 1970s. Such capacitors 

stored their charge in large area two-dimensional p-n junctions. Due to the high collection 

efficiency of the radiation-induced charge, the large planar reverse-biased junctions made 

early DRAM cells highly susceptible to soft errors. Technology scaling and the push to 

improve the high soft error rate (SER) and poor pause/refresh time ratios of DRAMs 

necessitated the development of more compact three-dimensional storage capacitors. 

Compared to the old 2D planar capacitors, the new 3D capacitors had significantly smaller 

junction collection efficiency due to the reduced volume of the p/n junction. Despite the 

reduction of the Qcrit of a DRAM cell due to VDDscaling, it was more than compensated by 

the aggressive junction volume scaling of the storage capacitor. As a result, the SER of a 

DRAM bit cell is reducing by about 4x per technology generation. 

 This DRAM SER reduction is, however, being offset by the similar DRAM bit count 

growth rate at a system level. Because larger DRAM arrays are statistically more susceptible 

to soft errors, the resulting DRAM SER at the system level has remained relatively stable 

over many recent technology generations. Early SRAMs were more robust to soft errors than 

DRAMs due to the feedback mechanism that helps to maintain the state of an SRAM cell. In 

an SRAM cell both the capacitance of the storage node and the restoring current provided by 

the pull-up or driver transistors contribute to the cell critical charge.  

With technology scaling, the SRAM cell area and thus, the junction area of the 

storage nodes are shrinking (Fig S1). While it could reduce the cell junction leakage, it also 

reduced the storage node capacitance. Simultaneously, the transition from the constant 

voltage scaling to the constant electric field scaling resulted in aggressive VDD scaling. Both 

these factors directly contribute to the reduction of the resulting Qcrit and the increasing 

probability of soft errors leading to higher SER levels. With each successive technology 

generation, the reductions in cell collection efficiency due to shrinking cell depletion volume 

was compensated by the reductions of VDD and storage node capacitance.  

Therefore, soft errors have recently become a growing issue in ultra-high densitylarge 

embedded SRAMs operating at low voltages. The SRAM bit SER is shown to have saturated 

for technology nodes beyond 0.25 µm due to the saturation in VDD scaling, reductions in 

junction collection efficiency of highly doped p-n junctions and the increased charge sharing 

between the neighboring nodes. However, the exponential growth of SRAM cell count in 

modern CPUs and DSP processors has led the SRAM system SER to increase with each 

technology generation. 
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Fig  :The normalized junction volume and capacitance of SRAM storage nodes and the power 

supply voltage VDD scaling as a function of the technology generation. 

Readback scrubbing has been seen by the researchers as an effective mechanism to provide 

error correction in SRAM-based FPGAs [10]–[14]. Three categories of readback scrubbers 

can be found in the literature. The first category enables fault detection with a direct 

comparison between read frames and the golden copy [13]. The fault is corrected by 

overwriting the faulty frame with the respective golden copy frame. The second category 

does not use an exhaustive comparison with the golden copy [14]. It detects the faults 

matching the online computed error detection codes (EDCs) with the original ones, 

previously computed and externally stored for each frame. Similar to the previous category, 

the fault recovery is performed using the frame’s golden copy. The third category enables the 

fault detection, computing ECCs for each frame [10]–[12]. The ECCs allow the faults’ 

detection, similar to the previous category. However, upon fault detection in a frame, the 

faults can be easily recovered using the ECCs. Once the fault is recovered, the frame is 

written back into the FPGA. Different error detection schemes, combined with different 

ECCs have been proposed in the literature. However, they are not really efficient to handle 

burst errors. Lanuzza et al. [12] proposes a scheme to correct burst errors in SRAM-based 

FPGAs by applying hamming codes to a data word obtained by frame bit interleaving. The 

bit interleaving technique reduces the probability to have several bit-faults in the same data 

word, thereby increasing the correction efficiency. However, the error correction is limited by 

the amount of bit interleaving, and hence might not be suitable if a very high error correction 

efficiency is required. Argyrides et al. [10] introduce a scheme called Matrix Code (MC), that 

uses hamming codes combined with parity codes to enable the detection and correction of 

multiple errors in an FPGA configuration frame. A frame word is mapped into a matrix of 

sub words. Errors are corrected by computing hamming codes for each row, providing Single 

Error Correction Double Error Detection (SECDED) and computing parity codes for each 

column. As a result, this scheme is not efficient in handling MBUs, since if more than two 

errors occur in the same row, they are not detected by the ECC code. Park et al. [11] propose 

a built-in 2-D Hamming Product Code (2-D HPC) scheme. This technique is able to perform 

SECDED by using hamming codes built from arranging the FPGA configuration frame in a 
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2-D array. Therefore, hamming codes are computed for each row and for each column of the 

2-D array. Like the previous work, this scheme is not able to detect more than two errors that 

occur in the same row or column, and hence not efficient in handling burst errors. 

proposes two novel schemes for error detection and correction in SRAM-based FPGAs, using 

the readback scrubbers. Both these schemes are based on existing ECCs, i.e., parity codes and 

hamming codes, which are applied to the FPGA frames. A frame is the lowest reconfigurable 

granularity that can be found in an FPGA. In particular, the FPGA configuration data frames 

F Rc contain information about the circuit design to be implemented on the FPGA. These 

schemes map sequentially the content of each frame fri ∈ F Rc in a 2D data matrix mfri with 

nr rows and nc columns. ECC codes are then computed for this 2D data matrix and stored in 

an internal or external storage. During runtime, the frames are periodically read and mapped 

to the 2D data matrix to see if they contain any errors. Errors are identified by comparing the 

ECCs to the ones stored in the memory. In the case of an error, the proposed algorithm 

attempts to rectify the affected bits. Once the errors are rectified, the corrected frame is then 

written back into the FPGA board. 

 

 

 

 

 
Fig. ECCs used in H3 scheme. 

Error Model There are two different error models considered for this work. Both these 

models focus on SEUs, i.e., transient soft errors due to a single particle strike and which 

affect the configuration (both the logic and routing) bits of the FPGAs. The first model 

considers SBUs (single errors) and the second considers MBUs (burst errors). Both error 

models are illustrated in Figure 1. According to the literature, the latter model is more 

realistic since it is very common that a single particle strike might affect one or more 

neighboring bits [12]. We try to detect and correct both single errors as well as burst errors in 

this work. The following sub-sections discuss these schemes in detail with examples to 

illustrate the working of each. B. H3 Scheme H3 scheme applies hamming codes to the frame 

matrix at the design time in three directions, rows, columns and in one of the diagonals as 

shown in the Figure 2. With this scheme, single error correction (SEC) is available for each 

row rj ∈ mfri, for each column cj ∈ mfri and for each line of one of the diagonals dj ∈ mfri. 
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The pseudocode presented in Algorithm 1 illustrates the H3 scheme behavior. The matrix 

frame is received as input and SEC is sequentially applied to the rows, columns and diagonal. 

While errors are detected in the matrix frame, SEC is continuously applied. When no errors 

are detected the mfri is returned. Figure 3 illustrates the working of the H3 scheme. In the 

first iteration, the algorithm computes the hamming codes for the rows, columns and 

diagonals respectively and compares it to the ones already stored in memory. As can be seen 

from the figure, errors are found in rows 2 and 7 (matrix A1), columns 1, 2, 4, and 6 (matrix 

A2) and diagonal 2 and −3 (matrix A3). These error bits are highlighted in yellow color. All 

the errors are corrected at the end of the first iteration. 
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ECC Overhead: By definition, for SEC, the number of hamming bits h required for a n-bit 

word is given by the equation, n +1+ h ≤ 2h. This way, the ECC overhead can be given by 

Equation 1, H3oh = nd j=1 hdj + (nr × hr)+(nc × hc) (1) where, hdj , the number of hamming 

bits for each diagonal j, is given by |dj | +1+ hdj ≤ 2hdj ; hr, the number of hamming bits for 

the rows, is given by nc +1+ hr ≤ 2hr; hc, the number of hamming bits for the columns, is 

given by nr +1+hc ≤ 2hc; nd, the number of diagonals of the matrix, is given by nd = nr + nc 

− 1; dj is the set of elements of the diagonal j. 

 
P2H Scheme P2H scheme provides error detection and correction through the use of both 

parity and hamming codes. Parity codes are applied for each row rj ∈ mfri and for each 

column cj ∈ mfri, while hamming codes are applied for each line of one of the diagonals dj ∈ 

mfri, as shown in Figure 4. Since parity code can only detect the presence of a single error, 

this scheme also employs an efficient algorithm to not only detectThe first operation detects 

and corrects any single-bit error for each diagonal dj ∈ mfri through the function sec (dj ). 

This first operation can be observed in Figure 6 (A1 − A2). Note the frame burst errors can be 

easily corrected on this first operation. Once all the single bit errors in the diagonals are 

removed, it is not possible to correct any more errors using only a single direction. Therefore, 

the next operation set identifies the diagonals, rows and columns with errors and matches 
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them in order to identify their exact location. ded(dj ) identifies the diagonals with double 

errors, through the hamming codes. ped (rj ) and ped(cj ) identify the rows and the columns 

with errors, through the parity codes. These locations are submitted to the function eci, which 

match them and produce a set of intersections in the matrix frame. These intersections are 

potential bit errors. This way, several operations are then performed to identify and correct 

the errors. Figure 5 presents a flowchart, which describes the operation flow performed by 

P2H scheme. In particular, the shaded area describes the operation flow performed in the 

scope of eci function. 

 
 

 

4. CONCLUSION 

In this brief, a technique to protect the SRAMs used to emulate TCAMs on FPGAs 

has been proposed. The scheme is based on the observation that not all values are possible in 

those SRAMs, and thus, there is some intrinsic redundancy of the memory contents. This 

redundancy is used to correct most single-bit error patterns when the memories are protected 

with a parity bit to detect errors. The proposed technique reduces significantly the resources 

needed to protect the memories and can be an interesting option for designs on which 

reliability is a concern, but resources are limited.The idea presented in this brief can be 

extended to other memory configurations. For example, it can be used to detect errors on an 

unprotected memory by periodically scrubbing the contents to check their correctness. It 

could also be used when the memory is protected with a more powerful code that can detect 

several bit errors to correct multiple bit errors. For example, for a memory protected with an 

SEC code, double-bit error patterns could be detected and then use the intrinsic redundancy 

of the memory contents to correct them. 
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