
International Journal of Engineering Technology and Management Sciences 
Website: ijetms.in Issue: 1 Volume No.7 January - February – 2023 

DOI:10.46647/ijetms.2023.v07i01.024 ISSN: 2581-4621 
 

 

@2023, IJETMS          |         Impact Factor Value: 5.672     |          Page 168 

IMPLEMENTATION OF UNMANNED AERIAL VEHICLES AS 

FLYING BASE STATIONS TO ASSIST 5G NETWORKS 

 
KAKAULA RAMESHWARAMMA1, Dr. N MAGESWARI2 

1DECS 202T1D3806, ASHOKA WOMENS ENGINEERING COLLEGE, KURNOOL, A.P. 
2 Professor – ASHOKA WOMENS ENGINEERING COLLEGE, KURNOOL, A.P 

 

ABSTRACT 

Current wireless communication networks are not able to accommodate the increase in broadband 

data and are currently encountering fundamental challenges like higher data rate and Quality of 

Service (QoS) requirements, energy efficiency and excellent end-to-end performance and user 

coverage in overcrowded areas and hotspots whilst maintaining extremely low latency and high 

bandwidth. The deployment of 5G networks aims to address such challenges by introducing multiple 

advancements to the network and implementing new technologies to evolve new radio networks. This 

will primarily be done by introducing the 5G New Radio, which is the radio technology that is being 

developed to support the 5G technologies that will solve the problems mentioned previously. With 

the New Radio implementation, the next generation networks will accommodate the growing data 

rates. The networks are expected to attain a mobile data volume per unit area that is 1,000 times 

higher than current networks. Over 10-100 times the number of current connected devices is expected 

to be accommodated by 5G networks. Coverage is primarily the crucial problem with 5G networks, 

requiring the densification of urban areas with heterogeneous networks and the deployment of more 

closely packed terrestrial MBSs. However, this is not cost-effective and can be more complex as 

terrestrial network replanning will be required. The issue can be overcome by integrating UAVs into 

the network infrastructure as FBSs. 

Key Words - UAV,FBS, 5G,QoS.  

 

Introduction 
The complementation of different technologies harvested by the Fourth Industrial Revolution is key 

to leaping towards the fully automated world of tomorrow. For such reasons, mobile data networks 

have become an integral and underlying structure of the world. The initial evolution of wireless 

networks was primarily a virtually infinite network of computers, key to the advancements of the 

20th century and the restructuring of its economies [1]. The evolution of the internet brought by the 

advent of Third Generation wireless networks (3G) initiated the mobile internet, introducing the 

connectivity of devices. Fourth Generation wireless networks (4G) satisfied the growing thirst of the 

world to use the internet even more dynamically. This advent witnessed the emergence of the Internet 

of Things (IoT), which is currently connect- ing a number of devices over six times times larger than 

the global human population. Every advancement introduces newer network complexities and 

challenges such as higher data rate requirements and the limitation of available frequency spectrum. 

The existing wireless sys- tems will not be able to handle the exponential increases in mobile 

broadband data accelerated by the increased Machine-to-Machine (M2M) communications [8]. The 

much anticipated de- ployment of the Fifth Generation of wireless networks (5G) is expected to 

accommodate the increased data rates and requirements by providing larger scale connectivity. This 

will be done by enhancing current network technologies to improve the networks, and by introducing 

new technologies that will evolve a new network with unique standards. However, as previously 

mentioned, every advancement in the networks introduces more complex challenges. 5G net- works 

introduce a new spectrum range that offers extreme capacity and speed, but this comes at the expense 

of coverage. The high frequency waves used in the upper bound of the spectrum range that 5G 

employs travel at lower wavelengths, introducing the need for densification of the networks. More 

Terrestrial Macro Base Stations (MBSs) will need to be deployed to provide connectivity, with small 

cells dominating the urban areas of cities to complement the Macro Cell layer. However, due to 
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geographical constraints and cost limitations, many regions will not be able to smoothly deploy the 

higher band spectrum of 5G networks. Recently, the deployment of Unmanned Aerial Vehicles 

(UAVs) in wireless networks has received significant attention and research to approach such 

constraints. The flexibility of UAV networks can over- come geographical constraints and cost 

limitations if deployed optimally. Developments such as Google’s Project Loon and projects aiming 

to enable wide-scale communications through UAV employment by ATT and Qualcomm are 

motivating further research into the deployment of UAVs to act as Flying Base Stations (FBSs) [5] . 

FBSs can augment the terrestrial 5G network by enhancing operations in a plethora of varying use 

cases such as data collection for IoTs, in- formation dissemination, and machine-type 

communications. The FBSs can be used to support high communication demand areas such as large 

events or highly dense regions. In such use case scenarios, the UAV assisted 5G networks can provide 

seamlessly ubiquitous connectivity at any location, potentially well beyond the coverage area of a 

single terrestrial MBS. This will improve the network efficiency and flexibility and thus ease the 

growth in high data demand. 

 

1. Literature Survey 

In paper [1] the path optimization for flying base station is discussed and implemented.Paper [2] 

addressed the minimization of total Rotary-wing UAV consumption for wireless com- munication. 

The paper addressed different types of energy consumption such as propulsion, hovering, and 

communication related energy consumption. The paper succeeded in deriving a propulsion power 

consumption model which helped minimize the total UAV energy consump- tion. Traveling Salesman 

Problem (TSP)and convex optimization techniques were effectively used to demonstrate optimal 

hovering locations for the UAVs while still satisfying target GN communication throughput. An 

algorithm was proposed to solve the modelled optimization problems from the power consumption 

model, and the algorithm produced results which min- imized energy consumption for the UAVs. 

The algorithm significantly outperformed other approaches discussed in the paper such as the 

geometric center fly hover approach or the GN hover approach. Paper [2] weighed multiple 

approaches to solving the TSP for the trajectory optimization of UAVs, and the results displayed the 

superiority of the 2-opt NN algorithm. This motivated further investigation into using the algorithm 

in this project. The algorithm outperformed the PSO and GA heuristics both in terms of computational 

time and distance in some experimental results displayed in the paper. The paper also discussed the 

K-means clustering algorithm and other clustering approaches to be integrated with a TSP solver. 

This was also a source of motivation to implement some of the techniques in this project to opti- mize 

trajectory. The TSP was also largely investigated in papers [3] [4] [5]. Some of the papers provided 

results of algorithm experiments which were used to evaluate algorithms in this project. It was 

unknown whether the 2-opt algorithm could run exponentially in a special case of point distribution, 

until paper [6] addressed this issue by presenting such distributions. The below table summarizes 

some significant topics in FBS optimization by highlighting the papers addressing each problem. 

 
Implementation 

Clustering is the objective of grouping objects into multiple clusters based on the similarities between 

the objects. An efficient implementation of clustering will result in different clusters in which the 

objects have similarities that are different to those of objects in other clusters.[wiki clustering]. To 

solve the problem faced by the two FBSs, (3.5) will present an algorithm that will be devised to cluster 

the GNs using a local search technique. This will assist in splitting the two GN clusters according to 

the locations of the GNs in space. By using the local search techniques the clustering will focus on 

achieving the best possible multi-cell partitioning so that the MTSP problem faced by the FBSs is 

solved. In the standard MTSP, m ≥ 1 salesmen must leave from one depot and return to it after having 

completed m tours subject to each tour passing through a city only once. Every city mast have been 

part of a single tour. The objective is that the resulting cost which is the addition of the distances 
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covered by the tours is the lowest cost possible. Consequently, the tours must be optimally directed. 

The variation faced by the FBSs differs from the standard MTSP because in the case of the FBSs, 

each FBS must return to the MBS that the FBS was appointed to. Hence, rather than all tours having 

to end at a single depot, each tour can end in a different depot subject to every tour returning to the 

depot it originated from. To assess the performance of the proposed algorithm, the results will be 

compared to those produced by similarly integrating the local search algorithm with the traditionally 

used K- means clustering algorithm. K-means clustering is effective in clustering object sets with 

using a technique that divides data sets based on centroids. 

To efficiently cluster all GNs as previously mentioned, some algorithms will be proposed and 

analysed. The simulations that intend to find the optimal cell edge location by implementing  the 

algorithms will then be explained. 
Summary of Traditional Algorithms 

As previously discussed, the 2-opt local search applied to a NN tour will be used in the algo- rithms 

that will be proposed. The 2-opt NN algorithm follows the  

 
K-means Clustering will be used as the standard of evaluation of the proposed algorithms to verify 

the efficiencies and performances of the algorithms. K-means uses the spatial distri- bution of n points 

to partition the points in to k clusters. The algorithm works by randomizing locations of k centroids 

and calculating the distances between every point and every centroid, assigning points to the clusters 

centered at the centroids closest to the points [2]. The algo- rithm then replicates new centroids located 

at the centres of gravities of the points assigned to each cluster. The algorithm completes once the 

centroids are located at the mean of all points in the cluster assigned to the centroid, and no more 

changes can be made. K-means is known to have a complexity O(n2) The pseudocode of the 

algorithm is below [3].  

 
Analysis of Proposed Algorithms 

Consider a two dimensional coordinate plane in Euclidean space and two coordinates x, y 

where the point where x and y are the largest values on the X-axis and the Y-axis 

respectively. The area size of P is x × y and there is a distribution of n points on the plane where each 

point  
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. Both x and y in the following algorithms are equal to the Euclidean distance between two terrestrial 

MBSs. 

Algorithm 1: FBS Linear Boundary-search 

Algorithm 1 intends to find the optimal location of the linear cell edge that separates two cells by 

finding the net distance covered, using the 2-opt NN algorithm, by each FBS at multiple cell edge 

locations. The output will be the cell edge location at which the net distance is the minimum net 

distance. This will group the GNs within the cells into two clusters each of which will be serviced by 

the FBS appointed to the terrestrial MBS in the according cell. Algorithm 1 iterates through 7 X-

coordinates representing a linear boundary where bq is perpendicular to the X-axis 

at  The algorithm does so by incrementally increasing the value of qi within the 

range  at every iteration. 

 

 
 

Figure 1: Boundary Incrementation Range 

                                 

Figure 1 can be used to visualize how the algorithm will run.  

The net distance covered by the FBSs will be calculated at seven locations of the boundary. The first 

boundary is located at the dashed line on the left and the last at the dashed line on the right An 

explanation of the algorithm inputs and outputs is below followed by the pseudocode on the following 

page. 

Input: 

Is the value of the distance (km) between the two terrestrial MBSs. 

Is the number of GNs to be served by the FBSs. 

Is input as a 1 × 2 matrix [power(W) velocity(m/s)]. 

Output: 

Is a 1 × 7 matrix containing the net distance (km) covered by the FBSs at every boundary location. 

Is a 1×7 matrix containing the energy (J) consumed by FBS 1 at every boundary location. 

Is a 1×7 matrix containing the energy (J) consumed by FBS 2 at every boundary location. 

Is a 2 × 2 matrix containing the coordinates of the boundary location with the least net distance min(1) 

such that if the matrix was plotted with a line intersecting the two points the boundary would be the 

output. 

 Is the X-coordinate of the optimal boundary location. 
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The 2-opt algorithm firstly implements the greedy NN algorithm, which has a computational 

complexity of O(n2), to find a starting tour. The 2-opt algorithm, which also has a complexity of 

O(n2), is then implemented to improve the initial tour. As observable in the 2-opt NN pseudocode, 

the 2-opt begins running after NN runs, and so the exact worst case running time is (2 × n2). The 

constant 2 will be disregarded as n → ∞ in the worst case. Therefore, the computational complexity 

of the 2-opt NN algorithm is O(n2). As observable in the pseudocode of Algorithm 1, the 2-opt runs 

simultaneously within the boundary iteration loop.  The loop runs from B = 1:7, hence, the exact 

worst case running time is (7 × n2). Considering a constant upper bound of 7 for B, the constant 7 

will be disregarded as n → ∞ in the worst case. Therefore, the underlying computational complexity 

of Algorithm 1 , where n is the size of GNs, is O(n2). The algorithm runs in polynomial time, making 

the implementation quick. 

Algorithm 2: FBS Piece-wise Boundary-search 

Algorithm 2 intends to further optimize the cell edge location by improving the output of Algorithm 

1. The algorithm does so by inputting the optimal linear cell edge location and outputting an improved 

piecewise cell edge, further optimizing the GNs clustering. The same general procedure that 

Algorithm 1 follows is followed by Algorithm 2. The algorithm does so by initially using the output 

from Algorithm 1: the X-coordinate of the optimal linear cell edge location. Algorithm 2 then splits the 

linear boundary at two points p2 and p3 located at   

Algorithm 2 then iterates through five different locations of p2 and does so for p3 at every location 

of p2. Both p2 and p3 are incremented within the range as observed in Figure 3.6 below. 

Algorithm 2 will then iterate through 25 different piecewise boundary locations by incrementally 

increasing each point by x/40 and output the boundary at which the net distance covered by the FBSs 

is the lowest. 

 

 
 

Figure 2: Point Incrementation Range 

 

Input: 
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Is the value of the distance (km) between the two terrestrial MBSs. 

 

Is the number of GNs to be served by the FBSs. 

 

Is input as a 1 × 2 matrix [power(W) velocity(m/s)]. 

Is the X-coordinate of the optimal linear boundary location. 

 

Output: 

Is a 1 × 7 matrix containing the net distance (km) covered by the FBSs at every piecewise boundary 

location. 

Is a 1×7 matrix containing the energy (J) consumed by FBS 1 at every piecewise boundary location. 

Is a 1×7 matrix containing the energy (J) consumed by FBS 2 at every piecewise boundary location. 

Is a 4 × 2 matrix containing the coordinates of points at the starting point, endpoint, and the points at 

which the piecewise boundary with the least net distance min(1) splits such that if the matrix was 

plotted with a line intersecting the four points the piecewise boundary would be the output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As previously discussed, the computational complexity of the 2-opt NN algorithm is O(n2). As 

observable in the pseudocode of Algorithm 2, the tspsearch runs simultaneously within the p3 

iteration loop. The p3 iteration loop runs simultaneously within the p2 iteration loop. Both loops p2 

and p3 run from p2, p3 = 1:5, hence, the exact worst case running time is (25 × n2). Considering a 

constant upper bound of 25 for p2 × p3, the constant 25 will be disregarded as n → ∞ in the worst 

case . Therefore, the underlying computational complexity of Algorithm 2 , where n is the size of 

GNs, is O(n2). The algorithm runs in polynomial time, making the implementation quick. 

Algorithm 3: FBS Boundary-search 

Algorithm 3 combines both Algorithms 1,2 to efficiently find the optimal piecewise edge with only 

one input layer. The algorithm uses the input of Algorithm 1 and outputs the output of Algorithm 2. 

The pseudocode is as follows. 

 

 

Algorithm 5 FBS Boundary search 

Input: 1. (cell diamater) 2. (GNs) 3. (UAV parameters) 

Output: 1. (dnet pw) 2. (ec1 pw) 3. (ec2 pw) 4. (coordinates optimal edge pw) 

41 Implement Algorithm 1 to find optimal linear edge 

42 Implement Algorithm 2 to find optimal piecewise edge 

43 return Energy consumption of FBS 1,2 and Net distance and Optimal boundary coordinates 
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As observable in the pseudocode above, Algorithm 2 begins running after Algorithm 1 runs, and so 

the exact worst case running time is (2n2). The constant 2 will be disregarded as n → ∞ in the worst 

case. Therefore, the underlying computational complexity of Algorithm 3 , where n is the size of 

GNs, is O(n2). The algorithm runs in polynomial time, making the implementation quick. The 

parameters of Simulation 1 are summarized in the following table. 

Simulation 1 Parameters 

Parameter Description Value 

MC Monte Carlo runs 1000 

GNs Ground Nodes 20:10:80 

P(W) UAV Power 50 

V(m/s) UAV Velocity 60 

A(km2) (Distance between MBSs)2 3 × 3 

U(a,b) Uniform Distribution of GNs  

 

RESULTS 

In Simulation 1 the objective was to find the optimal location of a linear cell edge separating two 

adjacent cells. This was done to optimize the FBS trajectory and minimize the associated costs. The 

results of Simulation 1 are as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Optimal Linear Cell Edge                                

Figure 4: Optimal Linear Cell Edge for 50 GNs - Instance 1 Trajectory Representation 

 

 

Location after 1,000 Instances 
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As expected and observed in the above figures, when uniformly distributing GNs the central boundary 

is the optimal location for the linear cell edge as the lowest mean net distance is at the boundary with 

an X-coordinate of 1.5km in the 3km axis.. However, Figure (4.2) displays a pattern of decreasing 

values from left to center. Within boundaries 3 and 5 there is a boundary location at which the mean 

net distances begin increasing and the results display a continual increase until the final location. Note 

that the exact location that has the lowest possible mean net distance, precisely before the increase of 

values begins, is the optimal location for the boundary. To further investigate the area, Simulation 2 

will present the results of the optimal piecewise boundary, an extension of boundary 4 (1.5km) in 

Figure (4), within boundaries 3 and 5. The results of all other GN sets are the same as the above result 

and follow the same pattern discussed, and will therefore be displayed in a table below with the 

standard deviations of results of every node set. 

Key to Table (1): 

Is the X-coordinate of the point (x,0) at which the optimal linear boundary intersects the X-axis. 

Is the mean net distance of all 1,000 instances at the optimal boundary location. 

Is the standard deviation of the data set containing the seven mean net distances at each boundary 

obtained after all instances for all GN sizes. An example of a data set is the data set presented in 

Figure (4.1) for 50 GNs. 

Is the value of the standard deviation of the data set containing the 1,000 net distances of the boundary 

that had the highest standard deviation in the instances. 

Table 2: Simulation 1 Summary of Results 

 

GNs 20 30 40 50 60 70 80 

(1) x(km) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

(2) µl(km) 13.33 15.41 17.1 18.69 20.05 21.35 22.58 

(3) σ1(km) 0.0303 0.0720 0.0926 0.0829 0.0806 0.0601 0.0610 

(4) σ2(km) 1.1420 1.0426 0.9382 0.8787 0.8368 0.8431 0.8352 

The results in the above table summarize all findings from implementing Algorithm 1 in Simulation 

1 to find the most optimal linear cell edge location. The central boundary at 1.5km was found to be 

the optimal location for the linear boundary. The largest of seven boundary standard deviations of 

1,000 instances was recorded for 20 GNs. The GNs size and the reliability of the results are directly 

proportional as with the increase of GNs size, the table shows a decrease in the value of the worst 

standard deviation of 1,000 runs with the exception of a discrepancy in σ2 of 70 GNs. 
       Results: Simulation 2 

In Simulation 2 the objective was to improve on the results of Simulation 1 by focusing on the search 

space within the three most optimal linear boundary locations. This was done by converting the 

optimal linear boundary into a three-segment piecewise boundary and obtaining the results of multiple 

piecewise boundaries within the optimal region in the X-coordinate range (1.35,1.65)km. This will 

further optimize the FBS trajectory and minimize the associated costs. The results of Simulation 2 

are as follows. 
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Figure 5: Optimal Piecewise Cell Edge Location after 1,000 Instances 

 

 

 

Figure 6: Optimal Piecewise Cell Edge for 80 GNs - Instance 1 Trajectory Representation 

 

As observed in the above figures, when uniformly distributing GNs a piecewise cell edge is most 

optimal at coordinates [(1.5,3) (1.425,2.25) (1.425, 0.75) (1.5,0)]. The piecewise edge improved the 

net distance by approximately 20m. The most significant improvement was observable when 

experimenting with 80 nodes. This is expected as Algorithm 2 implements the search in a very 



International Journal of Engineering Technology and Management Sciences 
Website: ijetms.in Issue: 1 Volume No.7 January - February – 2023 

DOI:10.46647/ijetms.2023.v07i01.024 ISSN: 2581-4621 
  

 

@2023, IJETMS          |         Impact Factor Value: 5.672     |          Page 177 

specific area to improve the local optimum obtained by Algorithm 1. The higher the density of GNs, 

the larger the effect of Algorithm 2. The algorithm effectively changed the cluster of the point with 

highlighted coordinates in Figure (4.4) and hence obtained an improved optimum. The algorithm is 

especially effective when dealing with large distances and GN sizes. As previously mentioned when 

discussing the cell edge placement problem, a single GN can make a difference to the  

Figure 7: K-means clustering of 80 GNs at Instance 1 

 

trajectories of the FBSs. For these reasons, such algorithms can be implemented to reduce the costs 

by any means attainable. To test the clustering performance of Algorithm 2, a comparison of results 

to K-means clustering will be presented and discussed below. 

 

 

 
 

Figure 8: K-means clustering of 80 GNs at Instance 10 

It is observable from the above figures that K-means clustering implements more dynami- cally than 

Algorithm 2. To assess the actual performances the below figures will compare the mean net distance 

of the optimal piecewise boundary obtained by Algorithm 2, to the mean net distance obtained by K-

means clustering. The effect of the clustering methods on the energy consumption per FBS will also 

be assessed below. The above figure displays a superiority in the performance of Algorithm 2 over 

K-means clustering. For all GN sets, the lowest mean net distance obtained by Algorithm 2 is lower 

than the mean net distance obtained by K-means clustering. 

 
 

 

Figure 9: Effect of Clustering on Energy Consumption of FBS 1 after 1,000 Instances 
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Figure 10: Effect of Clustering on Energy Consumption of FBS 2 after 1,000 Instances Both FBSs 

consume less energy when GNs are clustered by Algorithm 2 for every size of GNs. The algorithm 

maintains a lower slope on both graphs than K-means by 9% for FBS 1 and 2% for FBS 2, highlighting 

the superiority in the algorithm’s effectiveness with increasing numbers of GNs. The number of GNs 

increases the energy consumed as energy consumption of a rotary-wing UAV is not limited to propulsion 

energy due to other energy consuming qualities of the UAV such as hovering. In the results, both 

propulsion energy and hovering energy are considered. For these reasons, the number of GNs 

increases energy consumption of an FBS not only because of the increased distance, but also because 

of the increased GNs to hover above. However, the FBSs both incur the effect of larger node sizes 

with lower significance when clustered by Algorithm 2 than when clustered by K-means. Algorithm 

2 also maintains a stronger balance and consistency in the clustering as the rate of change in energy 

consumed per change in GN size is 7% higher for FBS 1 than for FBS 2. However, in the case of K-

means clustering, the rate for FBS 1 surpasses the rate for FBS 2 by 14%. Algorithm 2 succeeds in 

minimizing effect of the GN size on the energy consumed, for both FBSs, when compared to K-

means clustering. The algorithm does so by clustering more effectively and balancing the net FBS 

costs. The below table summarizes the results of Simulation 2. 

 

Key to Table (3): 

 

1. Is the X-coordinates of two points with coordinates (x1,2.25) and (x2,0.75)km at which the optimal 

piecewise boundary is incremented. 

2. Is the mean net distance of all 1,000 instances at the optimal boundary location. 

 

3. Is the decrease in distance from the output of Algorithm 1. 

 

4. Is the standard deviation of the data set containing the 25 mean net distances at each boundary 

obtained after all instances for all GN sizes. An example of a data set is the data set presented in 

Figure (4.4) for 80 GNs. 

5. Is the value of the standard deviation of the data set containing the 1,000 net distances of the 

boundary that had the highest standard deviation in the instances. 

6. Is the mean net distance of all instances of the K-means clusters. 
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Table 3: Simulation 2 Summary of Results 

 

 

 

GNs 20 30 40 50 60 70 80 

Algorithm 2 

(1) (x1, x2)(km) (1.425,1.57

5) 

(1.5,1.5

) 

(1.5,1.5

) 

(1.5,1.5

) 

(1.5,1.57

5) 

(1.5,1.42

5) 

(1.425,1.42

5) 

(2) µp(km) 13.32 15.41 17.1 18.69 20.04 21.35 22.56 

(3) µl − µp(m) 10 0 0 0 10 0 20 

(4) σ1(km) 0.0072 0.0110 0.0129 0.0135 0.0106 0.0096 0.0105 

(5) σ2(km) 1.1071 0.9651 0.9091 0.8759 0.8267 0.8531 0.8550 

K-means Clustering 

(6) µk(km) 13.54 15.68 17.33 18.87 20.21 21.45 22.64 

(7) σk(km) 1.2972 1.0905 0.9728 0.9225 0.8441 0.8186 0.8080 

 

 

 

 

Conclusion 

 

In the proposed work, the FBS search and K means are compared 

 

Figure 11: Comparison of Algorithm 2 and K-means Clustering - Mean Net Distance 

Table 4: Summary of Results 

     
GNs 20 30 40 50 60 70 80 

Algorithm 

2 
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(1) (x1, 

x2)(km) 

(2.1,2.1) (1.425,1.35) (1.2,1.275) (1.125,1.125) (1.05,1.125) (1.05,1.125) (1.125,1.30) 

(2) 

µp(km) 

11.26 13.34 14.81 16.09 17.19 18.21 19.23 

(3) µl 

− µp(m) 

30 0 30 10 10 50 50 

(4) 

σ1(km) 

0.0222 0.0148 0.0258 0.0218 0.0291 0.0529 0.0522 

(5) 

σ2(km) 

1.6593 1.3884 1.1829 1.1579 1.0798 1.1011 1.0966 

K-means 

Clustering 

              

(6) 

µk(km) 

13.26 15.14 16.56 17.88 18.89 19.93 20.86 

(7) 

σk(km) 

1.5594 1.361 1.1455 1.0719 0.9776 0.9601 0.9053 hei 

 
Figure 12: Effect of Clustering on Energy Consumption of FBS 1 after 1,000 Instances 

 

Figure 13: Effect of Clustering on Energy Consumption of FBS 2 after 1,000 Instances 

The above results display dynamic advantages and disadvantages of the implementation of each 

algorithm when dealing with the flash-crowd scenario. When assessing the energy consumption of 
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FBS 1, Algorithm 2 produces results that are significantly more detrimental to the FBS’s energy 

consumption than K-means does. The algorithm also outputs a larger  increase in energy 

consumption for every increase in GN size than K-means. This is due to the slope of Algorithm 2 

surpassing that of K-means by approximately 62%. However, K-means only managed to achieve 

better FBS 1 results by assigning flash-crowd segments in cell 1 to FBS 2. As observed in Figure 

(4.24), Algorithm 2 maintains a steady slope lower than the steeper slope of K-means by 

approximately 158%, due to the output of deploying FBS 2 to assist users far from the flah-crowd. 

Also, the maximum energy consumed by FBS 1 is 17.3 kJ higher than by FBS 2 for Algorithm 2. 

On the other hand, the difference for K-means is 410 J higher for FBS 1. However, Algorithm 2 

maintains a lower net energy consumption of both FBSs. In conclusion, K-means succeeds in 

minimizing any overcrowded area by dividing the servicing mission amongst two FBSs. The project 

addressed the potential of deploying UAVs as FBSs to assist 5G Networks. Trajectory optimization 

of FBSs was a key objective of this project, and hence intensive research on the TSP was discussed 

to better understand the problem and the approaches to solving it.   After find an optimal route for a 

single FBS, a second problem arose: the optimal cell edge placement. This problem was dependent 

on the trajectories of both FBSs as the problem was primarily to group all GNs in the multi-cell space 

into two clusters so that each could be serviced by a FBS. The primary concern was when a 

flashcrowd overwhelms one cell, and this was the key motive of trying to find a more optimal location 

for the cell edge so that the GNs can be clustered based on the dispersion of users rather than the 

geographical locations of the terrestrial MBSs. An algorithm that finds an optimal linear cell edge 

location based on the user dispersion was proposed. A second algorithm that improves the results of 

the first was also proposed, and this algorithm successfully and consistently outperformed K-means 

clustering when tasked with clustering GNs the multi-cell space. Future works on the aforementioned 

topics could include the improvement of the algorithms so that more dynamic clusters can be found. 

This would be possible by rotating the cell edge at an angle at every iteration. This would then 

diversify the applications of the algorithms in future applications. The algorithms could also be used 

to cluster GNs within the same cell to determine the trajectories of multiple FBSs deployed at the 

same MBS. A further improvement that can be made to the experiments would be the application of 

K-means to find optimal hover locations, rather than hovering over all GNs. This would be significant 

in a flashcrowd event as the FBS would be able to serve denser crowd more easily from the same 

location. The limitations of the above works are firstly the algorithms, which did produce significant 

results against K-means, however, K-means is more dynamic and can be applied to a multitude of 

applications. The current algorithms are very focused on cell spaces and not generic clustering. Some 

variations can be made to develop the algorithms so that they could be more applicable. 
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