IJETMS LANDING PAGE

International Journal of Engineering Technology and Management Sciences

2023, Volume 7 Issue 1

Design and Development of Terrain Globetrotter Bot

AUTHOR(S)

A. Joseph Walter, Akshay D. Akamanchi, C. Karthik, Mangala Shashank, Dr. Pavithra G., Dr. Sindhu Shree M., 4Dr. T.C.Manjunath, Aditya T.G., Sandeep K.V., Rajashekar M. Koyyeda, Dr. Suhasini V.K., Dr. Vijayakumar K.N.

DOI: https://doi.org/10.46647/ijetms.2023.v07i01.044

ABSTRACT
Autonomous vehicles (AV) increase safety while consuming less energy, fuel, and reducing traffic-related pollution. We'll create a Terrain Globetrotter Bot from scratch. An RP Lidar is interfaced with an RP Lidar in the front top portion of a Terrain Globetrotter bot, which has a straightforward construction and uses the ROS (Robotic Operating System) software library of version ROS Kinetic / Melodic. This low-cost mapping bot has capabilities like SLAM (Simultaneous Localization and Mapping), which can not only create a map of the environment using Lidar scans and Matlab's Robotic Operating System Software package to communicate with ROS in the Raspberry Pi via ROS Network Configurations, but also other features like asking the user to select the destination, path planning to safely reach the destination, and then gathering the necessary small resources. The objective of the project is to build a completely autonomous robot that can map its environment and avoid impediments. A chassis with tracks, two motors, a lidar, a compass, and a Raspberry Pi can be used to achieve this. The work given here is a mini-project that is taken up as a part of the curriculum completed by electronics and communication engineering students in the second year of the electronics & communication engineering department at Dayananda Sagar College of Engineering in Bangalore.

Page No: 298 - 303

References:

  1. T. Huang, "SLAMWARE - Slamtec - Leading Service Robot Localization and Navigation Solution Provider", Slamtec.com, 2018.
  2. T. DiCola, "Overview | BNO055 Absolute Orientation Sensor with Raspberry Pi & Beagle Bone Black | Adafruit Learning System", Learn.adafruit.com, 2018.
  3. "Python/C API Reference Manual — Python 2.7.15 documentation", Docs.python.org, 2018.
  4. A* pathfinding algorithm", Growing with the Web, 2018.
  5. WiringPi", Wiringpi.com, 2018.
  6. "Pololu - DRV8838 Single Brushed DC Motor Driver Carrier", Pololu.com, 2018.
  7. Aly, M. Real time Detection of Lane Markers in Urban Streets. In Proceedings of the 2008 IEEE Intelligent Vehicles Symposium, Eindhoven, The Netherlands, 4–6 June 2008; pp. 7–12.
  8. Bar Hillel, A.; Lerner, R.; Levi, D.; Raz, G. Recent progress in road and lane detection: A survey. Mach. Vis. Appl. 2014, 25, 727–745.
  9. Ying, Z.; Li, G.; Zang, X.; Wang, R.; Wang, W. A Novel Shadow-Free Feature Extractor for Real-Time Road Detection. In Proceedings of the 24th ACM International Conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016.
  10. Jothilashimi, S.; Gudivada, V. Machine Learning Based Approach. 2016. Available online: https://www.sciencedirect.com/ topics/computer-science/machine-learning-based-approach
  11. Zhou, S.; Jiang, Y.; Xi, J.; Gong, J.; Xiong, G.; Chen, H. A novel lane detection based on geometrical model and Gabor filter. In Proceedings of the 2010 IEEE Intelligent Vehicles Symposium, La Jolla, CA, USA, 21–24 June 2010; pp. 59–64.
  12. Zhao, H.; Teng, Z.; Kim, H.; Kang, D. Annealed Particle Filter Algorithm Used for Lane Detection and Tracking. J. Autom. Control Eng. 2013, 1, 31–35.
  13. Paula, M.B.; Jung, C.R. Real-Time Detection and Classification of Road Lane Markings. In Proceedings of the 2013 XXVI Conference on Graphics, Patterns and Images, Arequipa, Peru, 5–8 August 2013.
  14. Kukkala, V.K.; Tunnell, J.; Pasricha, S.; Bradley, T. Advanced Driver-Assistance Systems: A Path toward Autonomous Vehicles. In IEEE Consumer Electronics Magazine; IEEE: Eindhoven, The Netherlands, 2018; Volume 7, pp. 18–25.
  15. Yenkanchi, S. Multi Sensor Data Fusion for Autonomous Vehicles; University of Windsor: Windsor, ON, Canada, 2016.
  16. Alshamasin, M.S., Ionescu, F. and Al-Kasasbeh, R.T., (2009), Kinematic Modeling and Simulation of a SCARA Robot by Using Solid Dynamics and Verification by MATLAB/Simulink, European Journal of Scientific Research, Vol. 37 No. 3, pp. 388-405
  17. Barlas, F., (2004), Design of a Mars Rover Suspension Mechanism, Masters Thesis, Department of Mechanical Engineering, Izmir Institute of Technology
  18. Kuo, C.Y.; Lu, Y.R.; Yang, S.M. On the Image Sensor Processing for Lane Detection and Control in Vehicle Lane Keeping Systems. Sensors 2019, 19, 1665.
  19. Kang, C.M.; Lee, S.H.; Kee, S.C.; Chung, C.C. Kinematics-based Fault-tolerant Techniques: Lane Prediction for an Autonomous Lane Keeping System. Int. J. Control Autom. Syst. 2018, 16, 1293–1302.
  20. Borkar, A.; Hayes, M.; Smith, M.T. Robust lane detection and tracking with ransac and Kalman filter. In Proceedings of the 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009; pp. 3261–3264.
  21. Sun, Y.; Li, J.; Sun, Z. Multi-Stage Hough Space Calculation for Lane Markings Detection via IMU and Vision Fusion. Sensors 2019, 19, 2305.
  22. Lu, J.; Ming Yang, M.; Wang, H.; Zhang, B. Vision-based real-time road detection in urban traffic, Proc. SPIE 4666. In Real-Time Imaging VI; SPIE: Bellingham, WA, USA, 2002.
  23. Zhang, X.; Shi, Z. Study on lane boundary detection in night scene. In Proceedings of the 2009 IEEE Intelligent Vehicles Symposium, Xi’an, China, 3–5 June 2009; pp. 538–541.
  24. Borkar, A.; Hayes, M.; Smith, M.T.; Pankanti, S. A layered approach to robust lane detection at night. In Proceedings of the 2009 IEEE Workshop on Computational Intelligence in Vehicles and Vehicular Systems, Nashville, TN, USA, 30 March–2 April 2009; pp. 51–57.
  25. Priyadharshini, P.; Niketha, P.; Saantha Lakshmi, K.; Sharmila, S.; Divya, R. Advances in Vision based Lane Detection Algorithm Based on Reliable Lane Markings. In Proceedings of the 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, 15–16 March 2019; pp. 880–885.
  26. Hong, G.-S.; Kim, B.-G.; Dorra, D.P.; Roy, P.P. A Survey of Real-time Road Detection Techniques Using Visual Color Sensor. J. Multimed. Inf. Syst. 2018, 5, 9–14.
  27. Park, H. Implementation of Lane Detection Algorithm for Self-driving Vehicles Using Tensor Flow. In International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing; Springer: Cham, Switzerland, 2018; pp. 438–447.
  28. El Hajjouji, I.; Mars, S.; Asrih, Z.; Mourabit, A.E. A novel FPGA implementation of Hough Transform for straight lane detection. Eng. Sci. Technol. Int. J. 2020, 23, 274–280.
  29. Samadzadegan, F.; Sarafraz, A.; Tabibi, M. Automatic Lane Detection in Image Sequences for Vision-based Navigation Purposes. ISPRS Image Eng. Vis. Metrol. 2006.
  30. Cheng, H.-Y.; Yu, C.-C.; Tseng, C.-C.; Fan, K.-C.; Hwang, J.-N.; Jeng, B.-S. Environment classification and hierarchical lane detection for structured and unstructured roads. Comput. Vis. IET 2010, 4, 37–49.
  31. Han, J.; Kim, D.; Lee, M.; Sunwoo, M. Road boundary detection and tracking for structured and unstructured roads using a 2D lidar sensor. Int. J. Automot. Technol. 2014, 15, 611–623.
  32. Le, M.C.; Phung, S.L.; Bouzerdoum, A. Lane Detection in Unstructured Environments for Autonomous Navigation Systems. In Asian Conference on Computer Vision; Cremers, D., Reid, I., Saito, H., Yang, M.H., Eds.; Springer: Cham, Switzerland, 2015.
  33. Wang, J.; Ma, H.; Zhang, X.; Liu, X. Detection of Lane Lines on Both Sides of Road Based on Monocular Camera. In Proceedings of the 2018 IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China, 5–8 August 2018; pp. 1134–1139.
  34. YenIaydin, Y.; Schmidt, K.W. Sensor Fusion of a Camera and 2D LIDAR for Lane Detection. In Proceedings of the 2019 27th Signal Processing and Communications Applications Conference (SIU), Sivas, Turkey, 24–26 April 2019; pp. 1–4.
  35. Kemsaram, N.; Das, A.; Dubbelman, G. An Integrated Framework for Autonomous Driving: Object Detection, Lane Detection, and Free Space Detection. In Proceedings of the 2019 Third World Conference on Smart Trends in Systems Security and Sustainablity (WorldS4), London, UK, 30–31 July 2019; pp. 260–265.
  36. Lee, C.; Moon, J.-H. Robust Lane Detection and Tracking for Real-Time Applications. IEEE Trans. Intell. Transp. Syst. 2018, 19, 1–6.
  37. Son, Y.; Lee, E.S.; Kum, D. Robust multi-lane detection and tracking using adaptive threshold and lane classification. Mach. Vis. Appl. 2018, 30, 111–124.
  38. Li, Q.; Zhou, J.; Li, B.; Guo, Y.; Xiao, J. Robust Lane-Detection Method for Low-Speed Environments. Sensors 2018, 18, 4274.
  39. Son, J.; Yoo, H.; Kim, S.; Sohn, K. Real-time illumination invariant lane detection for lane departure warning system. Expert Syst. Appl. 2014, 42.
  40. Chae, H.; Jeong, Y.; Kim, S.; Lee, H.; Park, J.; Yi, K. Design and Vehicle Implementation of Autonomous Lane Change Algorithm based on Probabilistic Prediction. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 2845–2852.
  41. Chen, P.R.; Lo, S.Y.; Hang, H.M.; Chan, S.W.; Lin, J.J. Efficient Road Lane Marking Detection with Deep Learning. In Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 19–21 November 2018; pp. 1–5.
  42. Lu, Z.; Xu, Y.; Shan, X. A lane detection method based on the ridge detector and regional G-RANSAC. Sensors 2019, 19, 4028.
  43. Bian, Y.; Ding, J.; Hu, M.; Xu, Q.; Wang, J.; Li, K. An Advanced Lane-Keeping Assistance System with Switchable Assistance Modes. IEEE Trans. Intell. Transp. Syst. 2019, 21, 385–396.
  44. Wang, G.; Hu, J.; Li, Z.; Li, L. Cooperative Lane Changing via Deep Reinforcement Learning. arXiv 2019, arXiv:1906.08662.
  45. Wang, P.; Chan, C.Y.; de La Fortelle, A. A reinforcement learning based approach for automated lane change maneuvers. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1379–1384.
  46. Suh, J.; Chae, H.; Yi, K. Stochastic model-predictive control for lane change decision of automated driving vehicles. IEEE Trans. Veh. Technol. 2018, 67, 4771–4782.
  47. Gopalan, R.; Hong, T.; Shneier, M.; Chellappa, R. A learning approach towards detection and tracking of lane markings. IEEE Trans. Intell. Transp. Syst. 2012, 13, 1088–1098. [CrossRef]
  48. Lee, E. Digital Image Media Lab. Diml.yonsei.ac.kr. 2020.
  49. Romera, E.; Luis, M.; Arroyo, L. Need Data for Driver Behavior Analysis? Presenting the Public UAH-Drive Set. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems, Rio de Janeiro, Brazil, 1–4 November 2016.
  50. R. Devi Priya, R. Sivaraj, Ajith Abraham, T. Pravin, P. Sivasankar and N. Anitha. "Multi-Objective Particle Swarm Optimization Based Preprocessing of Multi-Class Extremely Imbalanced Datasets". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems Vol. 30, No. 05, pp. 735-755 (2022). Doi: 10.1142/S0218488522500209
  51. Deshmukh K P. "Wireless Transceiver Module HC-12 based Automatic Water-level Monitoring and Control System". International Research Journal on Advanced Science Hub, 2, 10, 2020, 24-28. doi: 10.47392/irjash.2020.184
  52. Naveenkumar S; Kirubhakaran R; Jeeva G; Shobana M; Sangeetha K. "Smart Health Prediction Using Machine Learning". International Research Journal on Advanced Science Hub, 3, Special Issue ICARD-2021 3S, 2021, 124-128. doi: 10.47392/irjash.2021.079
  53. Hari Prasada Raju Kunadharaju; Sandhya N.; Raghav Mehra. "Detection of Brain Tumor Using Unsupervised Enhanced K-Means, PCA and Supervised SVM Machine Learning Algorithms". International Research Journal on Advanced Science Hub, 2, Special Issue ICSTM 12S, 2020, 62-67. doi: 10.47392/irjash.2020.262
  54. Sona Solanki; Asha D Solanki. "Review of Deployment of Machine Learning in Blockchain Methodology". International Research Journal on Advanced Science Hub, 2, 9, 2020, 14-20. doi: 10.47392/irjash.2020.141
  55. Shreekar Kolanu; Shikhar Jyoti Dutta; Saurav Roy; Maheswari M.. "A Diabetic Diet Suggester and Appointment Scheduler Chatbot using Artificial Intelligence and Cloud". International Research Journal on Advanced Science Hub, 3, Special Issue 6S, 2021, 77-81. doi: 10.47392/irjash.2021.170
  56. Praveen Kumar Mishra; Prabhakar Tiwari. "Cyber Security in Smart Grid". International Research Journal on Advanced Science Hub, 2, 6, 2020, 26-30. doi: 10.47392/irjash.2020.33
  57. Salini Suresh; Suneetha V; Niharika Sinha; Sabyasachi Prusty. "Latent Approach in Entertainment Industry Using Machine Learning". International Research Journal on Advanced Science Hub, 2, Special Issue ICARD 2020, 2020, 304-307. doi: 10.47392/irjash.2020.106
  58. Gayathri N Shenoy; Chithu Rajan; Shibi Varghese; Vignesh M.V; ShanmugaPriya M; Priya S; Aparna George. "STERILOID: Room Sanitization Robot". International Research Journal on Advanced Science Hub, 2, 8, 2020, 100-104. doi: 10.47392/irjash.2020.101
  59. Mohan Kumar B.N; Rangaraju H.G. "Array Multiplier and CIA based FIR Filter for DSP applications". International Research Journal on Advanced Science Hub, 3, Special Issue ICEST 1S, 2021, 52-59. doi: 10.47392/irjash.2021.020
  60. Nieuwenhuijsen, J.; de Almeida Correia, G.H.; Milonakis, D.; van Arem, B.; van Daalen, E. Towards a quantitative method to analyze the long-term innovation diffusion of automated vehicles technology using system dynamics. Transp. Res. Part C Emerg. Technol. 2018, 86, 300–327.
  61. Rajashekhar, V., Pravin, T., Thiruppathi, K.: A review on droplet deposition manufacturing-a rapid prototyping technique. Int. J. Manuf. Technol. Manage. 33(5), 362–383 (2019)
  62. How to Cite This Article:
    A. Joseph Walter, Akshay D. Akamanchi, C. Karthik, Mangala Shashank, Dr. Pavithra G., Dr. Sindhu Shree M., 4Dr. T.C.Manjunath, Aditya T.G., Sandeep K.V., Rajashekar M. Koyyeda, Dr. Suhasini V.K., Dr. Vijayakumar K.N. . Design and Development of Terrain Globetrotter Bot . ijetms;7(1):298-303. DOI: 10.46647/ijetms.2023.v07i01.044