

MAXIMIZATION OF COMPRESSIVE STRENGTH IN TIG WELDING OF MILD STEEL USING RESPONSE SURFACE METHODOLOGY

¹ Oyinbade A.A , ¹Imoukhuede K.A and ²Akadri A.O

¹Department of Mechanical Engineering Technology, Rufus Giwa Polytechnic, P.M.B 1019, Owo, Ondo State, Nigeria. ²Department of Electrical/Electronic Engineering Technology, Rufus Giwa Polytechnic, P.M.B 1019, Owo, Ondo State, Nigeria.

Abstract: Welding defects influence the desired properties of welded joints giving fabrication experts a common problem of not being able to produce weld structures with optimal strength and quality. In this study, fatigue was minimized using artificial intelligence such as the Response Surface Methodology An optimal design of experiment was developed which was used as a guiding plan to conduct the experiment., thereafter a second order polynomial I model was developed which was used to minimize the fatigue with very significant statistical results. The result shows that the quadratic model was the most suitable for minimizing the fatigue response with a P-value < 0.05 **Keywords:** Defects, fatigue, joints, maximize, model, steel, Tungsten Inert Gas,

I. INTRODUCTION

Manual metal arc welding was first invented in Russia in 1888[1]. It involved a bare metal rod with no flux coating to give a protective gas shield. Welding was defined as an efficient and economical method for joining of metals. Welding has made significant impact on the large number of industry by raising their operational efficiency, productivity and service life the plant and relevant equipment [2]. Welding is one of the most common fabrication techniques which is extensively used to obtain good quality weld joints for various structural components. Welding is a joining process which involves intensive heating of the weldments, which causes an uneven temperature distribution and consequently local plastic strain in the weld and surrounding metal[3]. The mismatch of the plastic strains between the weld and the parent metal causes compressive stress, which can have adverse effects on the mechanical properties. Welding in steel structures design happens to be most the widely employed joining technology and it is well known to suffer challenges of corrosion and fatigue. Welding defects influence the desired properties of welded joints giving Fabrication experts a common problem of not being able to produce weld structures with optimal strength and quality. The reason TIG is becoming the most preferred technology is because it has the cleanest weld bead [4]TIG welding is done in a controlled atmosphere using a tungsten electrode which serves to produce an arc to melt the metal. Direct current (DC) or Alternating Current of High Frequency (ACHF) is used to enable the resulting continuous and stable arc without touching the metal electrode [4]. The use of artificial intelligence to analyze welding parameters and develop mathematical models produces contour plots relating important input parameters such as penetration size and reinforcement height of the weld bead was highlighted [5]. Several techniques connected to neural networks was explained and how they can be used to model TIG weld output parameters ,the experimental data consisted of values for voltage, current, welding speed and wire feed speed and the corresponding bead width, penetration, reinforcement height and bead cross-sectional area a randomized design of experiment for the selected input variables, namely current, voltage and gas flow rate using central composite design method prepare the mild steel coupons and produce the mild steel welded joints using tungsten inert gas (TIG) welding techniques, conduct the mechanical test on the welded samples in order to determine the post weld qualities, determine the optimum input parameters needed to achieve a specified value of weld process parameters using response surface methodology (RSM)

Website: ijetms.in Issue: 1 Volume No.7 January - February - 2023 DOI:10.46647/ijetms.2023.v07i01.049 ISSN: 2581-4621

II. RESEARCH METHODOLOGY

2.1 Design of Experiment

The experimental matrix was generated with the design expert software ,the central composite design was the most suitable for this experiment. This process followed the rules of repetition, randomization and local control so as to achieve an optimal experimental design. The input factors considered and their levels is shown in the table 1.

Table 1 :Process factors and their range										
Parameters	Unit	symbol	Coded value							
			Low (-1)	High(+1)						
Current	Amp	А	180	240						
Gas flow rate	Lit/min	F	18	24						
Voltage	Volt	V	16	22						

Table 2 : Experimental results of Compressive strength

Run	Туре	Current (A)	Voltage (V)	Gas Flow Rate (Lit/min)	Compressive Strength (Mpa)				
1	Center	200	42	7	450				
2	Center	200	42	7	460				
3	Center	200	42	7	440.5				
4	Center	200	42	7	420.5				
5	Center	200	42	7	436				
6	Center	200	42	7	434				
7	Fact	180	36	4	427				
8	Fact	220	36	4	603.9				
9	Fact	180	48	4	560.9				
10	Fact	220	48	4	668.9				
11	Fact	180	36	10	540.8				
12	Fact	220	36	10	640.6				
13	Fact	180	48	10	600.5				
14	Fact	220	48	10	660.9				
15	Axial	166.4	42	7	430.5				
16	Axial	233.6	42	7	650.9				
17	Axial	200	31.9	7	540.6				
18	Axial	200	52.1	7	677.9				
19	Axial	200	42	1.9	581.5				
20	Axial	200	42	12.0	673.8				

2.2. Experimental procedure

Power Hacksaw was used for cutting the mild steel plate to size measuring 60 x 40 x 10mm. The grinding machine was used for preparing the groove on the double transverse side of the plates of Mild Steel Subsequently single "V" groove angles (30 degree) were cut in the plates with 2 mm root faces for a total of 60 degree inclined angle between After the V-groove preparation, the Mild Steel were ready for the welding. The mild steel plates were tightly clamped during welding. The root gap of 2mm is provided between the two plates while performed for the welding. The V-

groove butt welding is performed during TIG welding process. The tungsten non consumable electrode having diameter 3 mm was used in experiment. The argon gas is used as a shielding gas. The pressure regulator was used to adjust the gas flow rate during operation. The filler metal ER309L having 2 mm diameter was used for the welding. The direct current Electrode positive (reverse polarity) was used for the welding

Figure 3: TIG equipment

Figure 1: weld samplesFigure 2: TIG shielding gas cylinder2.3 Materials used for the experiment

Mild Steel is one of the most common of all metals and one of the least expensive steels used. It is found in almost every product created from metal. It is easily weld able, very durable. Having less than 2 % carbon, it will magnetize well and being relatively inexpensive can be used in most projects requiring a lot of steel.

III.RESULTS AND DISCUSSION

In assessing the strength of the quadratic model towards maximizing the percentage dilution one way analysis of variance (ANOVA) table was generated which as presented table 3

File Edit View Display (
	Options Design Tools	Help										
	<u>a?</u>											
Notes for ADE DOE	y ^λ Transform I ■ F	it Summary f(x)	Model -	ANOVA	Diagnostics	Model Grap	hs					
👥 Design (Coded)		1 1		1		1	_					
- 🎫 Summary												
- 🔄 Graph Columns	Use your mouse to rig	nt click on individu	ual cells for def	initions.								
🕙 Evaluation	Response	1	Compressive	Strength								
- Analysis	ANOVA for Res	sponse Surface	Quadratic Mo	del								
- Compressive Stre	Analysis of varianc	e table [Partial s	um of square	s - Type III]								
Tensile Strength (Ar		Sum of		Mean	F	p-value						
Fatigue (Analyzed)	Source	Squares	df	Square	Value	Prob > F						
Optimization	Model	1.833E+005	9	20369.01	94.09	< 0.0001	significant					
Numerical	A-CURRENT	48736.72	1	48736.72	225.12	< 0.0001						
- 灯 Graphical	B-VOLTAGE	19036.43	1	19036.43	87.93	< 0.0001						
🟦 Point Prediction	C-GAS FLOW RATE	8324.56	1	8324.56	38.45	0.0001						
	AB	1464.22	1	1464.22	6.76	0.0265						
	AC	1945.94	1	1945.94	8.99	0.0134						
	BC	1769.23	1	1769.23	8.17	0.0170						
	A2	15338.67	1	15338.67	70.85	< 0.0001						
	B ²	46593.34	1	46593.34	215.22	< 0.0001						
	C ²	57874.36	1	57874.36	267.33	< 0.0001						
	Residual	2164.89	10	216.49								
	Lack of Fit	t 1232.56	5	246.51	1.32	0.3834	not significant					
	Pure Error	932.33	5	186.47								
	Cor Total	1.855E+005	19									

Table 3: ANOVA table for maximizing compressive strength

Website: ijetms.in Issue: 1 Volume No.7 January - February - 2023 DOI:10.46647/ijetms.2023.v07i01.049 ISSN: 2581-4621

To validate the adequacy of the quadratic model based on its ability to maximum compressive strength the goodness of fit statistics is presented in table 4

Table 4: GOF for validating model significance towards maximizing compressive strength

File Edit View Display Options Design Tools Help												
Notes for ADE DOE	Γ.	y ^λ Transform III Fit Summary f(x) Model ANOVA Diagnostics ∑Model Graphs										
- 📰 Design (Coded)	y	^ Transform	Fit Summary	1(X)	Model 🕂	ANOVA	Diagnostics	Model Graph	s			
- 🛄 Summary												
🔄 Graph Columns		Std. Dev.	1	4.71	R	Squared	0.9883					
Evaluation		Mean	54	4.99	A	dj R-Squared	0.9778					
- 📓 Analysis		C.V. %		2.70	Pr	ed R-Square	d 0.9415					
Compressive Stre	_	PRESS	1084	4.72	A	deg Precision	24.518					
- J Tensile Strength (Ar	-											
- J Hardness (Analyze:	-	The UD of D O										
Fatigue (Analyzed)	-	The "Pred R-Sq	uared" of 0.9415 is	s in reas	sonable agreeme	nt with the "A	dj R-Squared" of (J.9778.				
🛄 🛄 Optimization	_											
- 🔀 Numerical	_	"Adeq Precision	" measures the si	gnal to n	noise ratio. A rat	io greater tha	n 4 is desirable. Y	′our				
- 🎦 Graphical		ratio of 24.518 i	indicates an adequ	ate sign	nal. This model c	an be used to	o navigate the desi	gn space.				

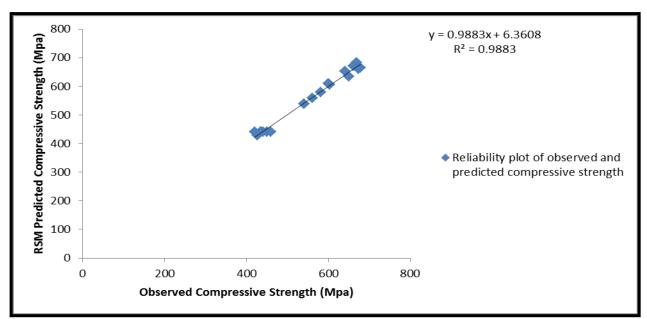
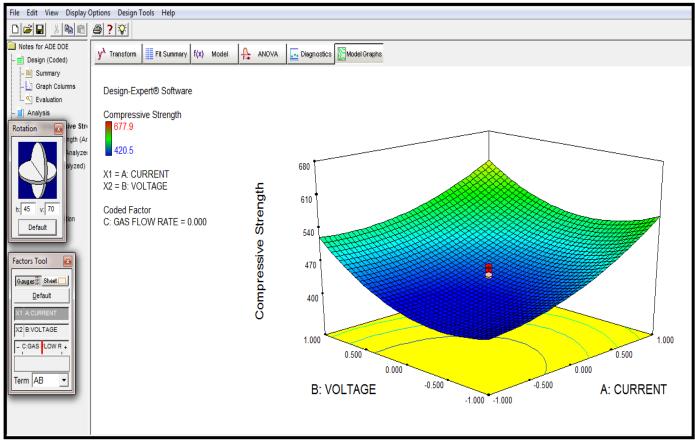

The optimal equation which shows the individual effects, and the combine interactions of the selected input variables, namely; current, voltage and gas flow rate against the measured compressive strength is presented based on actual factors in table 5

Table 5: O	ptimal e	auation in	terms of	f actual	factors	for maximizing	compressive	strength
	pumui ci	чишнон т	i c i i c i i c i i c	, ucinui	jucions	joi maninizing	compressive	Sucusu

File Edit View Display Options Design Tools Help										
	<u>⊜</u> ?¥									
Notes for ADE DOE	V [∧] Transform IIII Fit Summary f(x) Model ANOVA									
- 📰 Design (Coded)	Y ^A Transform Fit Summary f(x) Model									
🏥 Summary										
- 🔄 Graph Columns	Final Equation in Terms of Actual Factors:									
🕙 Evaluation										
- Analysis	Compressive Strength =									
Compressive Stre	+4364.07749									
- Tensile Strength (Ar	-23.08285 * CURRENT									
Hardness (Analyze)										
- Fatigue (Analyzed)										
🛄 🚺 Optimization										
💥 Numerical	-0.11274 * CURRENT * VOLTAGE									
🎦 Graphical	-0.25994 * CURRENT * GAS FLOW RATE									
E Point Prediction	-0.82618 * VOLTAGE * GAS FLOW RATE									
	+0.081561 * CURRENT ²									
	+1.57946 * VOLTAGE ²									
	+7.04124 * GAS FLOW RATE ²									



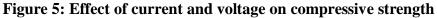
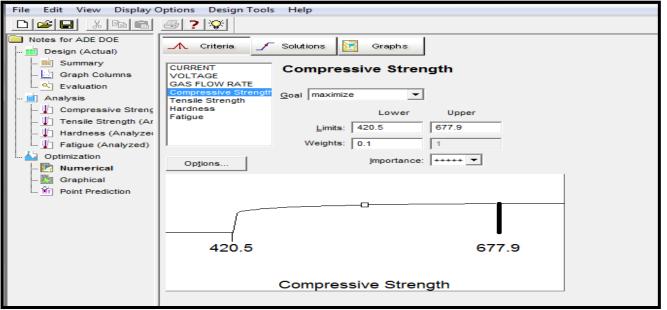

To asses the accuracy of prediction and established the suitability of response surface methodology using the quadratic model, a reliability plot of the observed and predicted values of the compressive strength response was obtained as presented in Figure 4

Figure 4: Reliability plot of observed versus predicted compressive strength

To study the effects of combine input variables on compressive strength variable), 3D surface plots presented in Figure 5



Website: ijetms.in Issue: 1 Volume No.7 January - February – 2023 DOI:10.46647/ijetms.2023.v07i01.049 ISSN: 2581-4621

The objective of this study was to determine the optimum current (Amp), voltage (volts) and gas flow rate (L/min) that will maximized compressive strength. The interphase of the numerical optimization showing the objective function is presented in Figure 6

The design expert software was used to produce the best optimal solution that will maximized the compressive strength present in the welds, the optimal solutions is shown in table 6

Table 6: The numerical o	ptimal solution showing	maximized com	pressive strength response
	point sources showing		

File Edit View Display Options Design Tools Help																	
Notes for ADE DOE		🔨 Criteria 📝 Solutions 🕅 Graphs															
III Design (Actual)	210																
🏥 Summary	Soluti	ions 1	2 3 4	5 6	7	8	9	10 11	12	13 14	15 16	17	18 19	20 2	1 22	23	24
Graph Columns																	
<u>S</u> Evaluation	Sc	olutions															
Analysis		Number	CURREN	T VOLTA	GE G	AS FLOW	RAT	Compressive	Tensi	ile Streng	Hardness		Fatique	Desira	bility		
Tensile Strength (Ar		1	220.0	0 36	.00		5.13	575.668		455.074	262.399		772.286		0.962	S	elected
Hardness (Analyzed		2	220.0		.00	-	5.17	574.956		455.295	263.218		775.206		0.962	_	
Fatigue (Analyzed)		3	220.0	0 36	.00		5.09	576.461		454.835	261.471		768.984		0.962		
🚵 Optimization		4	220.0	0 36	.00		5.23	573.857		455.648	264.514	Ļ	779.871		0.962		
- 🕅 Numerical		5	220.0	0 36	.00		5.26	573.45		455.785	265.014	Ļ	781.694		0.962		
🎦 Graphical		6	219.9	7 36	.00		5.02	577.5		454.449	260.116		764.119		0.962		
Point Prediction		7	220.0	0 36	.00		5.44	570.683		456.81	268.645		795.238		0.962		
Solutions Tool		8	220.0	0 36	.00		4.84	581.634		453.469	256.146		750.843		0.962		
Report		9	220.0	0 36	.07		5.29	572.011		456.111	265.608		782.985		0.962		
Ramps		10	219.8	5 36	.00		5.10	575.161		454.804	261.793		769.414		0.962		
🗾 Bar Graph		11	220.0	0 36	.15		5.05	575.283		454.973	260.7		764.658		0.962		
		12	219.8	6 36	.04		5.26	571.844		455.793	265.09		780.787		0.962		
		13	220.0	0 36	.00		5.68	567.703		458.231	273.39		813.892		0.962		
		14	220.0	0 36	.22		5.09	573.499		455.396	261.726	;	767.516		0.962		
		15	219.9	0 36	.00		4.69	584.378		452.617	252.894	Ļ	739.686		0.962		
		16	220.0	0 36	.00		4.44	591.614		451.376	247.262	2	722.684		0.962		
		17	220.0	0 36	.00		6.06	564.724		460.489	280.333	1	843.347		0.962		
		18	220.0	0 36	.04		4.23	597.31		450.409	242.327	,	707.693		0.961		
		19	220.0	0 36	.00		6.85	565.012		465.471	293.323	1	907.522		0.961		
		20	218.4	2 36	.00		4.88	569.109		452.614	257.5		747.491		0.960		
							-										

IV. CONCLUSION

In this study, the compressive strength response of TIG welding process has been maximized so as to increase the strength of the weldments. This study has systematically applied the Response Surface Methodology (RSM) to maximize compressive strength of Tungsten inert gas mild steel weld. The

results obtained showed that the compressive strength of TIG mild steel weld are strongly influenced by input variables such as current, voltage and gas flow rate. The surface plot showed that current and voltage were observed to have the highest significant effect on the compressive strength of TIG mild steel weld. The result showed that a current of 220 amp, voltage of 36volt, and gas flow rate of 5.13L/min will result in a welding process with maximum compressive strength of 575. This solution was selected by design expert as the optimal solution with a desirability value of 96%.

REFERENCES

[1] Shahnwaz Alam and .M.I.Khan (2011)" Prediction Of Weld Bead Penet

ration For Steel Using Submerged Arc Welding Process Parameters "International Journal of Engineering Science and Technology (IJEST)

[2] Kumanan, S., Edwin, R.D. J. and Gowthaman, K. (2007): "Determination of submerged arc welding process parameters using Taguchi method and regression analysis", Indian Journal of Engineering & Material Sciences Vol.14, pp.177-183.

[3]. L.P. Connor Welding Handbook American Welding Society, Miami, FL (1987)

[4] H. K. Narang, U. P. Singh, M. M. Mahapatra, P. K. Jha, "Prediction of the weld pool geometry of TIG arc welding by using fuzzy logic controller", International Journal of Engineering, Science and Technology, Vol.3, No.9, August 2012, pp. 77-85

[5] V. Gunaraj And N. Murugan, Application Of Response Surface Methodology For Predicting Weld Bead Quality In Submerged Arc Welding Of Pipes, J. Of Materials Processing Tech., Vol. 88, 1999, Pp. 266-275.

[6] Andersen K, Cook G, Karsai G, Ramaswamy K. Artificial Neural Network Applied To Arc Welding Process Modelling And Control. Ieee Trans IndAppl 1990;26(5):824–30.

[7] Cook, R. J. Barnett, K. Andersen and A. M. Strauss, Weld modelling and control using artificial neural networks, IEEE Transactions on Industry Applications, Vol. 31, n. 6, Nov/Dec. 1995, pp. 1484-1491.

[8] Sterjovski Z, Nolan D, Carpenter KR, Dune DP, Norrish J. Artificial neural network for modelling the mechanical properties of steels in various applications. J Mater Process Technol 2005;170(3):336–544.

[9] H. Okuyucu, A. Kurt and E. Arcaklioglu, Artificial Neural Network Application To The Friction Stir Welding Of Aluminium Plates, J. Of Materials & Design, Vol. 29, 2007, Pp. 78-84.