IJETMS LANDING PAGE

International Journal of Engineering Technology and Management Sciences

2023, Volume 7 Issue 2

Prediction of suicidal tendencies using machine learning

AUTHOR(S)

Gourab Karak, Kishalay Ghosh, Nur Muktada Hasan Ansari, Mrs. Sulekha Das, Dr. Avijit Kumar Chaudhuri

DOI: https://doi.org/10.46647/ijetms.2023.v07i02.006

ABSTRACT
Suicide is nowadays a crucial public health issue. In various communities, people are much more affected by this severe tendency. Nowadays, suicide connects to mental illness. Along with depression, drug misuse is an equally important risk factor. Although anxiety, personality, and trauma-related issues, as well as genetic and mental disorders, also equally contributed to this health issue. This research work conducts to find the relation among suicidal tendencies, depression, anxiety, daily stresses, and mental health among all people, including employees, non-employee, students, old age, and all others. Step-by-step multiple linear regression, logistic regression analyses, confusion matrix, and cross-validation use for the data analysis. Suicidal illusions have a significant and positive relation with depression, anxiety, mental stress, and drug use disorder. In this research work regression technique showed that depression is the most crucial feature in the prediction of suicidal behavior, where anxiety, mental health, and daily stresses are the next, followed by respectively. Psychological problems and mental health issues with other factors such as gender problems, marital problems, and hallucinations play a role in suicidal thoughts [1]. Through this research, approximately 84 percent (%) of the data predict correctly.

Page No: 38 - 46

References:

  1. Izadinia, N., Amiri, M., ghorban Jahromi, R., & Hamidi, S. (2010). A study of the relationship between suicidal ideas, depression, anxiety, resiliency, daily stresses, and mental health among Tehran university students. Procedia-Social and Behavioral Sciences5, 1615-1619.
  2. Bennett, S., Coggan, C., & Adams, P. (2003). Problematizing depression: young people, mental health and suicidal behaviors. Social Science & Medicine57(2), 289-299.
  3. Lee, K. H., Jun, J. S., Kim, Y. J., Roh, S., Moon, S. S., Bukonda, N., & Hines, L. (2017). Mental health, substance abuse, and suicide among homeless adults. Journal of evidence-informed social work14(4), 229-242.
  4. Betz, M. E., Valley, M. A., Lowenstein, S. R., Hedegaard, H., Thomas, D., Stallones, L., & Honigman, B. (2011). Elevated suicide rates at high altitudes: sociodemographic and health issues may be to blame. Suicide and Life‐Threatening Behavior41(5), 562-573.
  5. Van Orden, K. A., & Conwell, Y. (2016). Issues in research on aging and suicide. Aging & mental health20(2), 240-251.
  6. Brådvik, L. (2018). Suicide risk and mental disorders. International journal of environmental research and public health15(9), 2028.
  7. Ilgen, M. A., Zivin, K., McCammon, R. J., & Valenstein, M. (2008). Pain and suicidal thoughts, plans, and attempts in the United States. General hospital psychiatry30(6), 521-527.
  8. Rudatsikira, E., Muula, A. S., Siziya, S., & Twa-Twa, J. (2007). Suicidal ideation and associated factors among school-going adolescents in rural Uganda. BMC Psychiatry7(1), 1-6.
  9.  Zivin, K., Eisenberg, D., Gollust, S. E., & Golberstein, E. (2009). Persistence of mental health problems and needs in a college student population. Journal of affective disorders117(3), 180-185.
  10. Goodwin, R. D., Kroenke, K., Hoven, C. W., & Spitzer, R. L. (2003). Major depression, physical illness, and suicidal ideation in primary care. Psychosomatic Medicine65(4), 501-505.
  11. Samanta, A., Chowdhury, A., Das, D., Dey, A. K., & Das, M. S. Prediction through machine learning on the dependence of job prospects in the Afro-American community on proficiency in English.
  12. Roy, A., Nikolitch, K., McGinn, R., Jinah, S., Klement, W., & Kaminsky, Z. A. (2020). A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine3(1), 78.
  13. Trupti S. Gaikwad; Snehal A. Jadhav; Ruta R. Vaidya; Snehal H. Kulkarni. "Machine learning amalgamation of Mathematics, Statistics and Electronics". International Research Journal on Advanced Science Hub, 2, 7, 2020, 100-108. doi: 10.47392/irjash.2020.72
  14. Aldhyani, T. H., Alsubari, S. N., Alshebami, A. S., Alkahtani, H., & Ahmed, Z. A. (2022). Detecting and analyzing suicidal ideation on social media using deep learning and machine learning models. International journal of environmental research and public health19(19), 12635.
  15. Oppenheimer, C. W., Bertocci, M., Greenberg, T., Chase, H. W., Stiffler, R., Aslam, H. A., ... & Phillips, M. L. (2021). Informing the study of suicidal thoughts and behaviors in distressed young adults: The use of a machine learning approach to identify neuroimaging, psychiatric, behavioral, and demographic correlates. Psychiatry Research: Neuroimaging317, 111386.
  16. Gee, B. L., Han, J., Benassi, H., & Batterham, P. J. (2020). Suicidal thoughts, suicidal behaviours and self-harm in daily life: A systematic review of ecological momentary assessment studies. Digital health6, 2055207620963958.
  17. Nusrath Unnisa A; Manjula Yerva; Kurian M Z. "Review on Intrusion Detection System (IDS) for Network Security using Machine Learning Algorithms". International Research Journal on Advanced Science Hub, 4, 03, 2022, 67-74. doi: 10.47392/irjash.2022.014
  18. Rajesh P.; Vetrivel Govindarasu. "Analyzing and Predicting Covid-19 Dataset in India using Data Mining with Regression Analysis". International Research Journal on Advanced Science Hub, 3, Special Issue 7S, 2021, 91-95. doi: 10.47392/irjash.2021.216
  19. Mahalakshmi G.; Shimaali Riyasudeen; Sairam R; Hari Sanjeevi R; Raghupathy B.. "A Survey: Effective Machine Learning Based Classification Algorithm for Medical Dataset". International Research Journal on Advanced Science Hub, 3, Special Issue 9S, 2021, 28-33. doi: 10.47392/irjash.2021.245
  20.  

    How to Cite This Article:
    Gourab Karak, Kishalay Ghosh, Nur Muktada Hasan Ansari, Mrs. Sulekha Das, Dr. Avijit Kumar Chaudhuri . Prediction of suicidal tendencies using machine learning . ijetms;7(2):38-46. DOI: 10.46647/ijetms.2023.v07i02.006