

MACHINE LEARNING AT THE EDGE: A DATA-DRIVEN ARCHITECTURE WITH APPLICATIONS TO 5G CELLULAR NETWORKS

S.Maheswari¹, B.Deepa², S.Keetha³, G.Suganthi⁴

^{1,2,3}Assistant Professors, Nandha Engineering College, Erode. 4 PG Scholar, Nnadha Engineering College, Erode.

ABSTRACT

To meet the ultra-low latency demands of future applications, the fifth generation of cellular networks (5G) will rely on edge cloud installations. In this research, we show that similar deployments may also be deployed in mobile networks to allow sophisticated data-driven and Machine Learning (ML) applications. We propose an edge- controller-based cellular network design and assess its performance using real-world data from hundreds of base stations of a large US operator. In this context, we will discuss how to dynamically cluster and associate base stations and controllers based on users' worldwide movement patterns. The controllers will then be used to run ML algorithms to forecast the number of users in each base station, as well as a use case in which these predictions are utilized by a higher-layer application to direct vehicular traffic based on network Key Performance Indicators (KPIs). We demonstrate that prediction accuracy increases when based on machine learning algorithms that depend on the controllers' view and, as a result, on the spatial correlation provided by user mobility, compared to when the prediction is based only on the local data of each individual base station.

Keywords: 5g, machine learning, edge controller, mobility, big data

Introduction

The fifth generation (5G) of cellular networks is being developed to meet the significant increase in capacity demand, number of connections, and expanding use cases of a connected society in 2020 and beyond.

1.1 **5**G

5th-generation wireless is the most recent version of cellular technology, designed to significantly improve the speed and responsiveness of wireless networks. Data carried through wireless broadband connections may now move at multigigabit rates, with some estimates putting peak speeds as high as 20 gigabits per second (Gbps). These speeds outperform wire line network rates and provide latency of less than 5 milliseconds (ms) or less, which is beneficial for applications requiring real-time input. Because of increased accessible bandwidth and enhanced antennatechnology, 5G will enable a significant rise in the volume of data delivered across wireless systems. To meet the growing reliance on mobile and internet-enabled devices, 5G networks and services will be deployed in stages over the next several years. As the technology matures, 5G is likely to spawn a slew of new applications, uses, and business cases. It also works on Wireless networks are made up of cell sites that are separated into sectors that carry data through radio waves. Long-Term Evolution (LTE) wireless technology of the fourth generation (4G) serves as the foundation for 5G. In contrast to 4G, which requires huge, high-power cell towers to broadcast signals over larger distances, 5G wireless signals are carried by a large number of tiny cell stations positioned in areas such as light poles or building rooftops. Multiple small cells are required because the millimeter wave (mmWave) spectrum-the band of spectrum between 30

and 300 gigahertz (GHz) that 5G relies on to generate high speeds can only travel short distances and is susceptible to interference from weather and physical obstacles such as buildings or trees. Previous versions of wireless technology employed lower-frequency spectrum bands. To address the issues of distance and interference with mmWave, the wireless industry is investigating the use of a lower-frequency spectrum for 5G networks, allowing network operators to roll out their new networks using

spectrum they currently hold. Lower-frequency spectrum travels farther but has less speed and capacity than mmWave.

1.2 MACHINE LEARNING

Machine learning (ML) is an artificial intelligence (AI) science that enables machines to automatically learn from data and previous experiences while finding patterns to generate predictions with minimum human interaction. Machine learning approaches allow computers to function independently without the need for explicit programming. ML apps are fed fresh dataand may learn, grow, evolve, and adapt on their own. Machine learning extracts useful information from enormous amounts of data by using algorithms to recognize patterns and learnin an iterative process. Instead of depending on any preconceived equation that may serve as a model, ML algorithms employ computing methods to learn directly from data. During the 'learning' processes, the performance of ML algorithms improves adaptively as the number of accessible samples increases. Deep learning, for example, is a sub-domain of machine learning that trains computers to mimic natural human features such as learning from examples. It outperforms traditional ML algorithms in terms of performance parameters. While machinelearning is not a new idea, it has been utilized since World War II with the Enigma Machine, the capacity to apply complicated mathematical computations automatically to rising quantities and kinds of accessible data is a comparatively recent development.

1.3 EDGE CONTROLLER

An edge controller is a component of an Internet of things (IoT) system used in the industrial sphere, which includes industrial activities. It gathers information from numerous field devices put on-site at client sites. In addition to gathering field device data, recent edge controllers have emerged to execute data processing that demands more complicated capabilities and high-speed response by splitting the processing performed in the higher layer. This is known as edge-heavy computing. This paper describes the edge controller problems, the function and characteristics of Fuji Electric's edge controllers, application examples, and the future view.

1.4 MOBILITY

The present design and standardization of the next generation, or Fifth Generation (5G), will enable new use cases, applications, and impressively difficult mobility performance requirements. Nextgeneration mobile networks, for example, should provide seamless mobility with minimal data interruption at each handover, even at high speeds. This paper provides a novelstudy analysis of Mobility Management (MM) solutions in next-generation cellular networks. Traditionally, Mobility Management solutions were built for LTE, however owing to a rise in demand for high-speed seamless mobility without interruption at every changeover in recent years, the solutions have remained ineffective. As a result, in order to increase QoS and reduce delay, this proposed work technique would comprise minimizing delay during handoff andanalyzing mobility management in both low and high speed scenarios.

1.5 BIG DATA

Big data refers to vast, diversified collections of information that are growing at an exponential rate. It includes the amount of information, the velocity or speed with which it is generated and gathered, and the variety or scope of the data points covered (the "three v's" of big data). Big data is frequently derived by data mining and arrives in a variety of formats. It also works on Big data may be classified as either unstructured or organized. Structured data is information that an organization has already controlled in databases and spreadsheets; it is typically numerical in nature. Unstructured data is disorganized information that does not fit into a preset model or format. It contains information obtained from social media sources to assist organizations in gathering information on client demands. Big data may be taken via publicly published comments on social networks and websites, as well as from voluntarily collected personal gadgets and applications, questionnaires, product transactions, and electronic check-ins. Theinclusion of sensors and other inputs in smart devices enables data to be collected across a wide range of settings and conditions. 1 Big data is typically kept in computer systems and processed using software created expressly to handle huge, complicated data sets. Many software-as-a- service (SaaS) firms specialize in handling complicated data.

DOI:10.46647/ijetms.2023.v07i02.075 ISSN: 2581-4621

Literature Review

NGMN Alliance et al.'s perspective on 5g architecture [1] offers The fifth era of versatileinnovation (5G) will deal with 2020 and past financial requests and corporate circumstances. Leading operators from around the world came up with their vision for 5G in an effort led by the NGMN Alliance. They took into account consumer and business contexts, potential technologies, and migration concerns. The NGMN 5G whitepaper lays out their precise vision, but it also discusses important topics that will affect the design of 5G architecture, such as 5G design principles, 5G components, network slicing, 5G radio access technologies, and 5G interfacing alternatives.NGMN sees 5G as an allencompassing system that will boost productivity, sustainability, and well-being for a society that is fully mobile and connected by 2020 and beyond [1-3]. It will also empower a wide range of businesses. A new set of use cases will be made possible by 5G's expansion of the network capacity envelope, which will increase things like data speeds, latency, and connection density. As this would be prohibitively expensive, 5G should avoid a monolithic design focused on the most stringent requirements because not all use cases require the same level of performance and capability. Five Disruptive Directions for 5g Technology[2] Federico Boccardi et al.suggest that new research initiatives will change the way fifth-generation (5G) cellular networks are built in the future. Five technologies are discussed in this article that could alter component and architectural design: millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications are all examples of device-centric architectures. The most important ideas behind each technology, as well as how they might affect 5G and the other research questions, are discussed. The cellular network of the fifth generation, or 5G, is nearing completion. Which technology will give it its shape? Will 5G simply be an extension of 4G, or will it cause such a disruption to established cellular concepts that they need to be rethought? Using the Henderson-Clark paradigm, we will examine the implications of potentially disruptive technologies for 5G in this article. The following are some ways in which we will characterize the influence of new technologies: Minor changes at the architectural and node levels (such as the introduction of codebooks and signaling support for more antennas).

Millimeter Wave Cellular Wireless Networks: Opportunities and Threats[3] Sundeep Rangan et al.propose in this paper that millimeter wave (mmW) frequencies somewhere in the range of 30 and 300 GHz are another wilderness for cell correspondence, promising significant degrees more noteworthy data transmissions joined with extra gains through bar framing and spatial multiplexing from multi-component radio wire exhibits. The measurements and capacity studies used to evaluate this technology are the focus of this study, which focuses on small cell installations in urban areas. The findings provide a lot of hope;Non-line-of-sight (NLOS) outdoor, street level coverage is possible up to about 200 meters from a potential low power micro- or microcell base station, according to tests conducted in New York City at 28 and 73 GHz. Based on statistical channel models derived from these data, mmW systems can also offer acapacity improvement of more than an order of magnitude over the current state-of-the-art 4G cellular networks at the current cell densities. It will be necessary to significantly alter cellular networks in order to fully reap these benefits.

Networks Based on Minds: A Fresh Look at Distributed Intelligence and Learning for Network Optimization [4] in this study, Michele Zorzi et al. In this position paper, we propose a novel system paradigm known as Cognition Based Networks (COBANETS) as a response to emerging issues in the design and operation of communication networks. We draw inspiration from how living things deal with complexity and scalability. For system-wide modeling, optimization, and data representation, the proposed approach is based on the systematic application of sophisticatedmachine learning methods, such as unsupervised deep learning and probabilistic generative models. In addition, we propose in COBANETS that the learning architecture be combined with emerging network virtualization paradigms. This will make it possible to activate automatic optimization and reconfiguration methods at the system level, thereby completely unlocking the learning approach's potential. This paper's technical approach is more comprehensive and deeply interdisciplinary than previous and ongoing efforts in this area. It requires a synergistic combination of expertise from

DOI:10.46647/ijetms.2023.v07i02.075 ISSN: 2581-4621

computer scientists, communications and networking engineers, and cognitive scientists with the ultimate goal of breaking new ground through a profound rethinking of how modern cognition can be used in the management and optimization of telecom systems.

In Intelligent 5g, cellular networks and artificial intelligence meet [5] in this study. argue that 5G cellular networks are the most important facilitator and infrastructure provider in the ICT sector, providing a wide range of services to meet a wide range of needs. The accelerated standardization of 5G cellular networks suggests that additional candidate technologies will be selected. Consequently, it is beneficial to examine the design philosophy that underpins the various potential approaches and to provide insight into them as a whole. One of the most fundamental characteristics of the revolutionary methods of the 5G era is highlighted in this article:the emergence of initial intelligence in nearly all significant aspects of cellular networks, including service provisioning management, radio resource management, mobility management, and so forth. In any case, despite everprogressively complex arrangement challenges and thriving new help necessities, it is as yet deficient for 5G cell organizations in the event that it needs full artificial intelligence capabilities.

In this study, Sandeep Chinchaliet al. use deep reinforcement learning in cellular network traffic scheduling [6].offered A new category of traffic from Internet of Things (IoT) devices like smart wearables and self-driving cars is driving extraordinary demand growth for modern mobile networks. While maintaining strict service guarantees for traditional real-time applications like phone and video, future networks will need to plan for delay-tolerant software updates, data backup, and other transfers of IoT devices. Because conventional traffic is highly dynamic across time and location, scheduling all IoT traffic as it arrives immediately has a significant impact on its performance. A scheduler based on reinforcement learning (RL) that can dynamically adapt to traffic variance and multiple incentive functions that network operators have established to optimize the scheduling of IoT traffic are described in this study.

Big Data Analytics in Mobile Cellular Networks [7] The authors of this paper, YING HE et al.suggest that mobile cellular networks have become both carriers and producers of data. Big data analytics has the potential to boost operator income while also improving the operation of mobile cellular networks. In this study, we present a single data model that is based on random matrix theory and machine learning. After that, we offer a design framework for putting big data analytics into mobile cellular networks. We also talk about a lot of examples from mobile cellularnetworks, like a lot of signaling data, a lot of traffic data, a lot of location data, a lot of radio waveform data, and a lot of heterogeneous data. In conclusion, we discuss a number of unsolved issues in mobile cellular network big data analytics research.

Predictive Mobile Networking: A Study Prediction Methodologies, Context-Based Classification, and Optimization Techniques [8] In this study, Nicola Bui et al.suggest that rather than reacting to changes, a growing trend in information technology is to anticipate them. New solutions, like recommendation systems, are already ubiquitous in digital transactions today because of this paradigm. In order to enhance network performance, anticipatory networking applies the concept to communication technologies by analyzing patterns and periodicity in human behavior and network dynamics. This study gathers and examines existing research on how context information can be used to anticipate network conditions and improve network performance. The goals and limitations of common applications and situations are specifically identified and correlated with the primary prediction and optimization techniques utilized in this body of work.

Expectant Versatile Figuring: Challenges and State-of-the-Art [9] In this study, veljko pejovic et al.argue that today's mobile phones are more than just tools for communication. Users' location, activities, social context, and other information can be inferred from their phones thanks to their sophisticated sensors and cutting-edge computational technology. From inferring context to predicting context, reasoning, and acting on the expected context, gadgets become more intelligent. This article paves the way for full-fledged anticipatory mobile computing by providing an overview of current research in mobile sensing and context prediction. We provide an overview of the phenomena that mobile phones can infer and predict, as well as a description of the machine learning

methods used to make these predictions.

Machine Learning Paradigms for Next-Generation Wireless Networks [10] in this study by CHUNXIAO JIANG et al.claim that a new wireless radio technology paradigm is required for next-generation wireless networks to enable fundamentally novel applications and extremely high data rates. In order to meet the various requirements of next-generation wireless networks, it is necessary to assist the radio in intelligent adaptive learning and decision making. One of the mostpromising approaches to artificial intelligence for smart radio terminals is machine learning.

5g Obstacles: Network densification, a variety of node types, the separation of the control and data planes, network virtualization, heavy and localized cache, infrastructure sharing, concurrent operation at multiple frequency bands, the simultaneous use of different medium access control and physical layers, and flexible spectrum allocations can all be envisioned as potential 5G ingredients, according to this study by Ali Imran and colleagues. Self-organizing networks, or SONs, have recently been actively investigated to address comparable difficulties in the contextof 3G and 4G networks. It is not difficult to predict that with such a mash-up of technologies, the complexity of operation and OPEX will be the most challenging task in 5G.

Ex Machine TCP:Computer-Generated Traffic Control [12] Keith Winstein and colleagues have proposed a novel approach to end-to-end congestion control for multiuser networks. Remy is a computer that creates congestion control algorithms for execution at the endpoints rather than writing each endpoint's response to congestion signals by hand as in traditional protocols. In this method, the protocol designer describes their prior network knowledge or assumptions, as well as objective that the algorithm will strive for, such as high throughput and minimal queuing time. In an effort to accomplish this, Remy then develops a distributed algorithm with control rules for the various endpoints. In ns-2 simulations, Remy-generated algorithms outperform human- designed end-to-end approaches like TCP Cubic, Compound, and Vegas. In some situations, Remy's algorithms also outperform approaches like XCP and Cubic-over-sfqCoDel (stochastic fair queuing with CoDel for active queue management) that require intrusive in-network adjustments.

D-Dash: Streaming Dash Video with a Deep Q-Learning Framework [13] In this study, Matteo Gadaleta et al.suggest that the widespread adoption of the dynamic adaptive streaming over HTTP (DASH) standard and the growing demand for smooth high-definition video streaming are major contributors to the substantial amount of research that has been done on bitrate adaptation algorithms. This is a great application for learning methodologies due to the mobile wireless channel and the richness and variety of the video contented-DASH is a framework that enhances DASH's quality of experience (QoE) by combining reinforcement learning and deep learning techniques. Feed-forward and recurrent deep neural networks, as well as more advanced approaches, are among the learning architectures discussed and evaluated. Performance metrics like freezing/rebuff ring occurrences and image quality across video segments are evaluated against cutting-edge algorithms that are both heuristic and learning-based.

Characterization of Human Mobility Using Data from Cellular Networks [14] In this study, Richard A. Becker et al.suggest that understanding how people's travels affect society and the environment requires characterizing patterns of human mobility. Location data from mobile phone networks can provide cost-effective, frequent, and extensive insight into human movements. We made apparatuses for examining unknown cell phone areas to research different components of human portability. We have looked at billions of location samples for hundreds of thousands of people, particularly in the metropolitan areas of Los Angeles, San Francisco, and New York. Estimates of the carbon footprints caused by home-to-work commuting, density maps of residential areas that contribute employees to a city, and relative traffic volumes on commutingroutes are among the findings of our research. By comparing our methods to ground truth provided by volunteers and independent sources like the US Census Bureau, we confirmed our findings.

Modeling Cellular User Mobility Using A Leap Graph [15] Wei Dong et al.suggest that coordinated base station selection and intelligent content perfecting are two ways in which user mobility prediction can assist a mobile service provider in making better use of its network resources. We

examine how to lead portability forecast utilizing base station level area data effectively accessible to a specialist organization in this examination. Handovers between base stations, on the other hand, can occur in the absence of actual user movement (for example, due osignal fluctuation), making it difficult to differentiate between genuine movements and handovers. The leap graph, in which each edge (or leap) corresponds to actual user movement, is what we propose as a solution to this problem. We demonstrate how leap-based mobility produces a prediction-friendly mobility trace and discuss its characteristics.

Collaborative Mobile Edge Computing in 5g Networks: New Perspectives, Scenarios, and Obstacles [16] Tuyen X. Tran et al.propose in this examination Portable Edge Processing (MEC) as an arising worldview that conveys registering, stockpiling, and systems administration capacities at the versatile Radio Access Organization's edge (RAN). Application execution in close proximity to end users is made possible by MEC servers, which are placed on a generic computing platform within the RAN. Backhaul and core network congestion is alleviated by this paradigm, which is essential for enabling mobile services with low latency, high bandwidth, and flexibility. This article imagines a real-time, context-aware collaboration structure at the edge of the RAN made up of mobile devices and MEC servers that brings together the various resources at the edge. Mobile-edge orchestration, collaborative caching and processing, and multi-layer interference cancellation are three examples we propose and investigate.

Living in Peril:Ejder Bastuget et al.'s study, "Proactive Caching's Role in 5g Wireless Networks," is available here. Given, this article delves into proactive caching, one of the main enablers of tiny cell network deployments in addition to 4G wireless networks. Due to predictive capabilities and current advancements in storage, context awareness, and social networks, anticipatory caching at base stations and users' devices can significantly reduce peak traffic needs. In order to demonstrate the effectiveness of proactive caching, we investigate two case studies that make use of the social and physical structure of the network. To alleviate backhaul congestion, we propose system that actively caches files during off-peak hours based on file popularity and correlations between user and file trends.

Rededge: In this study, Muhammad Habib ur Rehman et al. present a novel design for big data processing in mobile edge computing environments [18].offer We are witnessing the rise of novelbig data processing architectures as a result of the convergence of the Internet of Things (IoTs), edge computing, and cloud computing. Raw data streams are transferred to a cloud computing environment for processing and analysis by current big data processing systems. This approach is pricey and does not meet the needs of IoT applications for real-time processing. Rededge (data reduction on the edge), a novel big data processing architecture that combines mechanisms to enable the processing of big data streams close to the source, is the subject of this article's introduction and analysis.

Issues and Challenges in Radio Access Networks Based on Fog Computing [19] In this work, Geng Peng et al.offered A spectral and energy-efficient fog computing-based radio access network (F-RAN) is presented in this article as a viable paradigm for the fifth generation (5G) wireless communication system. The central idea is to make full use of the local radio signal processing, cooperative radio resource management, and distributed storage capabilities of edge devices. This could help alleviate a lot of the pressure on the front haul and get rid of large-scale radio signal processing in the centralized baseband unit pool. The fundamental F-RANs methods and system architecture are detailed in this article. The selection of transmission modes and the reduction of interference, two key methodologies with associated solutions, are discussed indepth. Edge caching, software-defined networking, and network function virtualization all have unresolved issues. A system capacity increase of at least 1000 and an increase in energy efficiency (EE) of at least 10 should be achieved by the fifth generation (5G) wireless communication system in comparison to the fourth generation (4G) wireless communication system Long-Term Channel Gain Prediction Methods In Wireless Networks [20] Federico Chiariotti et al. propose the cloud radio access network (C-RAN) as a combination of developing wireless and information technology solutions that incorporate cloud computing into radio access networks (RANs).suggest that modern wireless

networks require efficient resource allocation and cell handover prediction; However, this can only be accomplished if an effective method for anticipating the network's future state exists. In order to accomplish this, we investigate two learning methods for anticipating long-term channel gains in a wireless network. This prediction can be successfully carried out with the assistance of a GPS signal in the following effective ways: In this work, we only use previous channel samples and no geographical data to forecast future channel gains.

COMPARISON ANALYSIS

Title		Parameter Analysis	Future Work
	Mechanisms		
Perspective on 5G	affecting 5G architecture design, such as 5G design concepts, 5G components, network slicing, 5Gradio access technologies, and	need to support on- demand network function and capability composition, resulting in 5G network slices that use the	To increase quality such that commercial 5G systems can meet NGMN criteria.
Millimeter Wave Cellular Wireless			Technologies like as carrier aggregation and
0	as adaptive beam forming, multihop relaying, heterogeneous network architectures, andcarrier aggregation can be used.	unexpected characteristics: mmW signals are possibly feasible over distances of 100 m to 200 m	

Cognition-Based	Combining the	This findings might	having the potential to
Networks: Using	learning architecture	spur innovation in	drive disruptive
Learning and	with new	cognitive science	innovation in these
Distributed	network	and machine	sectors, as well as
Intelligence to	virtualization	learning, leading tothe	unforeseeable consequences
Optimize Networks	paradigms, which		
	enable automatic	learning approaches	that may benefit from
			the stimulation and shift in
	reconfiguration tactics	different limits and	viewpoint brought about by
		boundary conditions	the future vision
		than those	
		established in those	
	completely unlocking	fields in the past.	
	the		
	learning approach's		
	potential.		
		י י <u>ר</u>	
When Cellular		5 0 0	5G wireless networks and
	management, mobility	several potential	Ū.
Artificial		opportunities and	effectiveness. We could

Intelligence in Intelligent 5G	orchestration, and service provisioning management are all part of 5G cellular	potential challenges, we argued that it is still critical to bring more	networks will successfully enter the centre of a digitalized world.
Deep Reinforcemen	tFuture networks	To properly plan IoT	Future work will focus on
_			deploying an RL agent in a
			live network to validate
Traffic Scheduling			gains. We also intend to
	data backup, and other transfers from		distinguish between global and cell-specific features
		• • •	learned by our deep neural
	preserving rigorous		• -
	service guarantees	-	
	for traditional Real-		
	time applications like phone calling and		
	video		
	conferencing.		
Analytics of Big	Mobile cellular	Based on random	The issues will be
			addressed in the future.
Cellular Networks		machine learning, we	
	1	present a unified data	
	carriers. Big data	U	
	analytics can improve the	that, we provide an	
		architectural	
	ц		

	networks while increasing operator revenue.	framework for implementing big data analytics in mobile cellular networks.	
Classification, Prediction Methodologies, and Optimization Techniques in Anticipatory Mobile	networking applies the concept to communication technologies by investigating patterns and periodicity in	and analyses recent papers that use context information to forecast network conditions and, as a result, improve	In the future, we believe that a thorough and comprehensive cost- benefit analysis for specific anticipatory networking scenarios is a necessary next step in the field's research.
	to improve network performance.		
1 2		We give a survey of phenomena that	
		-	applications may be
State-of-the-Art	sensors and modern	infer and forecast, as	possible once we combine
Survey and	computational	well as a description	phone predictions with
Research	technology, may be	of the machine	advanced intelligence
Challenges	location, activities, social context, and other information.	that are utilized to make such	capable of steering the future through interaction with the user.
	more intelligent, their capabilities go	feedback loop is	

		proactive decision making and decision delivery.	
Paradigms of	The challenge is to	Machine learning is	The classes of supervised,
machine learning	aid the radio in	one of the most	unsupervised, and
fornext-	intelligent adaptive	promising artificial	reinforcement learning
Generation	learning and	intelligence methods	tools, as well as the
wireless networks	decision making in	forsmart radio	corresponding modeling
	order to meet the	terminals. With the	methodology and potential
	different	help of sophisticated	future applications in 5G
	requirements of	algorithms, future	networks, were
	next-generation	smart 5G mobile	investigated.
	wireless networks.	terminals are	
		expected to	
		autonomously	
		access the most	
		advantageous	
		spectral bands.	
5G Challenges:	While an al dente	A comprehensive	BSON requirements must
How to Empower	character of 5G has	framework for	be incorporated into 5G
SON with Big	yet to emerge,	equipping SONs	design and standardization
Data to Enable 5G	network	with big data to meet	at an early stage to ensure
	densification, a	the demands of 5G.	the availability of
	variety of node	We begin by	sufficient and necessary
	types, the	characterizing big	data in the future without
	separation of the	data in the context of	jeopardizing user privacy.
	control and data	future mobile	
	planes, network	networks,	

	virtualization,	identifying its	
	heavy and localized	sources and future	
	cache,	utilities.	
	infrastructure		
	sharing, concurrent		
	operation at		
	multiple frequency		
	bands, the		
	simultaneous use of		
	different medium		
	access control and		
	physical layers, and		
	flexible spectrum		
	allocations can all		
	be envisioned as		
	potential 5G		
	ingredients.		
TCP ex Machine:	The protocol	Human-designed	End-to-end algorithms (in
Congestion	designer specifies	end-to-end	TCP and elsewhere) that
Control Generated	their prior network	techniques, such as	adapt to whatever the
by a Computer	knowledge or	TCP Cubic,	lower layers are doing
	assumptions, as	Compound, and	should replace today's
	well as an objective	Vegas, were	informal approach of
	that the algorithm	outperformed by	hindering lower layers or
	will try to achieve,	Remy-generated	providing vague advice on
	such as high	algorithms. Remy's	how best to accommodate
	throughput and low	algorithms also beat	TCP. Remy offers a
	queuing delay.	approaches that need	solution to this problem.
	Remy then creates	intrusive in-network	
	a distributed	adjustments, such as	
	algorithm (the	XCP and Cubic-	

	control rules for the separate endpoints) in an attempt to attain this goal.	over-sfqCoDel, in several circumstances.	
D-DASH: A	Various learning	Our numerical	A considerable
DASH Video	architectures are	results, obtained on	advancement over
Streaming Deep	presented and	both real and	previous work on Q-
Q-Learning	evaluated,	simulated channel	learning DASH adaption
Framework	including feed-	traces, demonstrate	designs, achieving good
	forward and	D-DASH's	trade-offs between policy
	recurrent deep	superiority in nearly	optimality and
	neural networks, as	all of the quality	convergence speed. D-
	well as advanced	metrics considered.	DASH outperformed
	methods. D-DASH	Aside from	some of the most
	designs are	producing a	prominent adaption
	rigorously tested	significantly higher	strategies.
	against cutting-	QoE, the D-DASH	
	edge algorithms,	framework achieves	
	both heuristic and	faster convergence	
	learning-based,	to the rate-selection	
	assessing	strategy than the	
	performance	other learning	
	metrics such as	algorithms studied.	
	image quality		
	across video		
	segments and		
	freezing/rebuff ring		
	occurrences.		
Characterization	Characterizing	In each of the Los	Our most recent research
of Human	human mobility	Angeles, San	aims to provide fully
Mobility Using	patterns is crucial	Francisco, and New	synthetic models that

International Journal of Engineering Technology and Management Sciences

Data	understanding of how people's travel affects society and the environment. Cell phone network location data can throw light on human movements in a cost- effective, frequent, and large- scale manner.	regions, we evaluated billions of location samples for hundreds of thousands of people. Our findings include estimates of carbon footprints owing to	
User Mobility	prediction can help a mobile service provider make better use of its network resources, for as through coordinated base station selection and intelligent content perfecting. We	issue, we propose the leap graph, in which each edge (or leap) corresponds to actual user movement. We present the properties of leap- based mobility and show how it produces a more	services in order todiscover more application- specific improvements and demonstrate its use in real- world systems.

_

	prediction using base station level location information easily available to a service provider in this research.		
New Paradigms,	MEC servers are	We show how the	The technical challenges
•			and open-research issues
Challenges for	computing platform	can help to	will be highlighted in
Collaborative	within the RAN	accelerate the	future work to provide a
Mobile Edge	and enable for the	transition to 5G	glimpse of the
Computing in 5G	execution of delay-	networks. Finally,	development and
Networks	sensitive and	we discuss the key	standardization roadmap
	context-aware	technical challenges	of the mobile edge
	applications in	and open-research	ecosystem.
	close proximity to	issues that must be	
	end users. This	addressed in order to	
	paradigm relieves	integrate MEC into	
	backhaul and core	the 5G ecosystem	
	network congestion	efficiently.	
	and is critical for		
	allowing low-		
	latency, high-		
	bandwidth, and		
	flexible mobile		
	services.		
The Importance of	This article delves	We propose a	In the future, the proactive
Proactive Caching	into proactive	procedure that takes	caching problem can be
in 5G Wireless	caching, one of the	advantage of the	formulated from a game
Networks	main enablers of	network's social	theoretic learning

	beyond 4G wireless	structure by	viewpoint, with SBSs
	networks	predicting the set of	minimizing cache misses
	employing tiny cell	influential users who	by striking a fair balance
	network	will (proactively)	between cached items that
	deployments. Peak	cache strategic	will be requested and
	traffic needs can be	contents and	contents that are not
	significantly	disseminate them to	cached but are requested
	decreased by	their social ties via	by users. This is known as
	proactively	D2D	the exploration vs.
	supplying expected	communications.	exploitation paradigm.
	user requests via		
	caching at base		
	stations and users'		
	devices, thanks to		
	predictive		
	capabilities and		
	current		
	improvements in		
	storage, context		
	awareness, and		
	social networks.		
Rededge: A Novel	We present and	In a real-world	Toenhance the
Big Data	evaluate Rededge	experiment	compromising energy and
Processing	(data reduction on	environment with 12	memory usage on mobile
Architecture for	the edge), a novel	mobile users, we	edge devices in the future.
Mobile Edge	big data processing	analyze the Rededge	
Computing	architecture that	architecture and the	
Environments	incorporates	related mechanism.	
	mechanisms to	The experimental	
	facilitate the	results show that the	
	processing of big	Rededge model can	

	.10.1001//jetiiis.2020		
	source of the data. The Rededge approach makes use of mobile IoT edge devices as	cut huge data streams by up to 92.86% without sacrificing energy and memory usage on mobile edge devices.	
Radio Access			INTHE FUTURE
Networks Based on Fog	-	architecture and core	Nonetheless, given the field's relative infancy,
Computing: Issues	radio access	methods of F-RANs	there are a number of
and Challenges	network (F-RAN)	in detail. Key	outstanding issues that
-	as a viable	methodologies and	require further
	paradigm for the	their associated	investigation. Notably, the
	fifth generation	solutions, such as	conclusion is that more
	(5G) wireless	transmission mode	emphasis should be placed
	communication	selection and	on transforming the F-
	system, with great	interference	RAN paradigm into edge
	spectral and energy	reduction, are	caching, SDN, and NFV.
	efficiency.	addressed in detail.	
Five Disruptive	Device-centric	We concentrated on	The efficiency should be
5G Technology	architectures,	technologies that	increased in the future to
Directions	millimeter wave,	could lead to	provide a better network
	massive MIMO,	changes in both	with the 5G cellular
	smarter devices,	architectural and	network.
	and native support	component design:	
	formachine-to-	device-centric	
	machine	architectures,	
	communications	mmWave, massive	

International Journal of Engineering Technology and Management Sciences

Website: ijetms.in Issue: 2 Volume No.7 March - April – 2023 DOI:10.46647/ijetms.2023.v07i02.075 ISSN: 2581-4621

	are technologies		
	that could lead to	devices, and native	
	architectural and	M2M support. It is	
	component	expected that a	
	disruptive design	collection of these	
	changes.	ideas will form the	
		foundation of 5G.	
Learning methods	Efficient resource	In this paper, we	Future study might entail
forpredicting	allocation and cell	look at two learning	refining the prediction
long-term channel	handover prediction	strategies for	algorithms and training
gain in wireless	are critical in	predicting long-term	the predictors using data
networks	modern wireless	channel gains in a	from real-world cellular
	networks; however,	wireless network.	systems. Finally, a
	this is only possible	Previous research in	possible advance may be
	if there is an	the literature	the construction of a
	efficient way to	discovered effective	prediction-based resource
	estimate the	ways for performing	optimization system
	network's future	this prediction using	similar to the one shown.
	state.	a GPS signal.	

Conclusion

Machine learning, software-defined networks, and edge cloud will play a significant role in the next generation of cellular networks. Using a dataset gathered for more than a month fromhundreds of base stations of a large US cellular network in two distinct cities, we investigated how these three factors could be used together in the system design for 5G networks. We investigated the practical application of big data-based rules and machine learning in 5G cellular networks after examining the relevant state of the art.We proposed an overlay architecture that builds on top of 3GPP NR. In this architecture, a number of different controller layers take data from the RAN, process it, and use it to infer intelligent rules that can be applied to the cellular network.

References

[1]"NGMN perspective on 5G architecture," IEEE 81st Veh, by M. Iwamura.Technol.Conf.,2015, pp.1-5.

[2] "Five Disruptive Technology Directions for 5G," by F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, IEEE Communications Magazine, vol.52, no.2, feb. 2014, pages74-80.
[3] "Millimeter-wave cellular wireless networks:" by S. Rangan, T. S. Rappaport, and E. Erkip.Potentials and Obstacles," ProceedingsVol. IEEE102, no.3, pages, March 2014366-385.
[4] "Cognition-based networks:" by M. Zorzi, A. Zanella, A. Testolin, M. D. F. D. Grazia, and M. Zorzi, A fresh perspective on network optimization that incorporates distributed intelligence and learning," IEEE Access, vol.3, pp.1512-1530, 2015.

[5]R. Li and others, "5G Intelligent:"When Artificial Intelligence Meets Cellular Networks," IEEE Wireless Communications, vol.24, no.5, Oct. 2017, pp.175-183.

[6]S. Chinchali and colleagues, Utilizing deep reinforcement learning to schedule traffic on the cellular network," published in the Proceedings of the National Conference on Artificial Intelligence in 2018, pp.766-774.

[7]"Big data analytics in mobile cellular networks," by Y. He, F. R. Yu, N. Zhao, H. Yin, H. Yao, and R. C. Qiu, IEEE Access, vol.4, no.4, 2016, pp.1985-1996.

[8] A survey of anticipatory mobile networking: N. Bui, M. Cesana, S. A. Hussein, Q. Liao, I. Balanchine, and J. Widmer, "Context-based classification, prediction approaches, and optimization strategies," IEEE Communications Society Transactions, vol.19, no.3, pp.1790-1821, 2017 Third Quarter

[9]"Anticipatory mobile computing:" by V. Pejovic and M. Musolesi, A review of current research and challenges," ACM ComputingSurv.,vol.47, no.3, pages, April 201547:1-47:29.

[10] "Machine learning paradigms for next-generation wireless networks," IEEE Wireless Communications, C. Jiang, H. Zhang, Y. Ren, Z. Han, K. C. Chen, and L. Hanzo, vol.24, no.2, April 2017.

[11] "5G Challenges:" by A. Imran, A. Zoha, and A. Abu-Dayya."How to Enable 5G by Empowering SON with Big Data," IEEE Network, vol.28, no.6, pp.27-33, Nov. 2014.

[12] "TCP Ex Machine:" by K. Winstein and H. Balakrishnan.In the Proceedings of the ACM SIGCOMM Conf., "Computer generated Congestion Control,"2013, pp.123-134.

[13] "D-DASH:" by M. Gadaleta, A. Zanella, F. Chiariotti, M. Rossi, and othersA deep Q-Learning framework for streaming DASH video," IEEE Transactions on Cognitive Communications Networks, vol.3, no.4, pp.703-718, Dec. 2017.

[14] R. Becker and others, Characterization of human movement using data from cellular networks," ACM Communications, vol.56, no.January 1, 2013, pages74-82.

[15] "Modeling cellular user movement using a leap graph," by W. Dong, N. Duffield, Z. Ge, S. Lee, and J. Pang, in Proc.Int.Conf.Measurement of Passive Active Networks, 2013, pp.53-62.

[16] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, "Cooperative versatile edge figuring in 5G organizations:"New paradigms, situations, and difficulties," IEEE Communications Magazine, vol.55, no.April 4, 2017, pages54-61.

[17] "Living on the Edge:" by E. Bastug, M. Bennis, and M. Debbah. The Function of Proactive Caching in 5G Wireless Networks," published in IEEE Communications Magazine, vol.52, no.8, August 2014, pp.82-89.

[18] "Rededge:" by M. Medhat Gaber, P. P. Jayaraman, S. U. R. Malik, A. U. R. Khan, and M. Habib urRehman.A Novel Architecture for the Processing of Big Data in Mobile Edge Computing Environments," vol.6, no.3, 2017.

[19] "Fog-computing-based radio access networks:" by M. Peng, S. Yan, K. Zhang, and C. Wang.issues and difficulties," IEEE Network, vol.30, no.4, pages, July 2016,46-53.

[20] "Learning approaches for long-term channel gain prediction in wireless networks," authored by F. Chiariotti, D. D. Testa, M. Polese, A. Zanella, G. M. D. Nunzio, and M. Zorzi, and published in Proc.Int.Conf.Comput.