International Journal of Engineering Technology and Management Sciences

2023, Volume 7 Issue 2

Fault Detection of Aerospace Systems Based on Binary Grasshopper Optimization Algorithm

AUTHOR(S)

Silna.KV, Limna Das.P

DOI: https://doi.org/10.46647/ijetms.2023.v07i02.094

ABSTRACT
The entire flight movement procedure is managed by the aerospace system.Its ability to detect faults can help the aerospace prognostic health management system make decisions and carry out targeted maintenance, which is crucial for enhancing the safety and dependability of the air- craft systems. Aerospace systems are constantly subject to several failures due to the risks and difficulties of the space environment, including the deterioration of subsystem performance, sensor errors, connection loss, or equipment damage.The fault diagnosis method for aerospace systems based on binary grasshopper optimisation algorithm is proposed in this study using Deep Learning (DL) technique by taking use of the strong learning and intelligent recognition capacity.The suggested system offered a novel LSTM autoencoder architecture with supervised machine learning and deep learning techniques to carry out two distinct stages of fault diagnosis. The detection phase, employing the LSTM autoencoder with KNN, compacted the two phases. Then, the fault diagnosis phase, which is represented by the classification schema, is updated using a decision tree with KNN.The fault detection and diagnostics for LSTM in aircraft systems was completed successfully. The experimental findings proved the superiority and efficacy of the suggested strategy. The experimental findings proved the efficacy and superiority of the suggested strategy.

Page No: 845 - 853

References:

    • A. E. Hassanien, A. Darwish, and S. Abdelghafar(2018), ”‘Machine learn- ing in telemetry data mining of space mission: Basics, challenging and future directions‘,, ”,, Vol. 10, 06-Special Issue, 2019
    • A. E. Hassanien, A. Darwish, and S. Abdelghafar(2018), ”Telemetry min- ing: A machine learning approach to anomaly detection and fault diagnosis for space systems‘,, ”,, Vol. 10, 06-Special Issue, 2019
    • A. Fekih(2018), ”‘Fault diagnosis and fault tolerant control design for aerospace systems:,, ”,, Vol. 10, 06-Special Issue, 2021
    • aizhou Li , Jianhui Lin , Jinrong Liu and Yandong Zhao(2020), “Model-based fault diagnosis for aerospace systems:,” ”,Int J Theor Phys, 2020;56(10):3029–49 .
    • jangsheng Gui a, Jingyi Feia, ZixianWua, XiapingFub , Alou Diakitea (2019) ”Online condition diagnosis for a two-stage gearbox machinery of an aerospace utilization system using an ensemble multi-fault features indexing approach,”,arXivpreprintarXiz08.016679.
    • aizhou Li , Jianhui Lin , Jinrong Liu and Yandong Zhao(2020), “Model-based fault diagnosis for aerospace systems:,” ”,Int J Theor Phys, 2020;56(10):3029–49 .
    • Bing Xiao, Shen Yin(2019), “A Deep Learning-based Data-driven Thruster Fault Diagnosis Approach for Satellite Attitude Control System,” ”,IntJTheorPhys, DOI 10.1109/TIE.2020.3026272.
    • Musab ElDali , Krishna Dev Kumar (2021), “Fault Diagnosis and Prognosis of Aerospace Systems Using Growing Recurrent Neural Networks and LSTM,” ”,IntJTheorPhys, 350 Victoria St., Toronto .
    • wan Keijzer,iccardo M.G. Ferrari r(2020), “Threshold design for fault detec- tion with first order sliding mode observers,” ”,Automatica146(2022)110600, 2020;56(10):3029–49 . ’
    • wan Keijzer,iccardo M.G. Ferrari r(2020), “Advances in Integrated System Health Management for mission-essential and safety-critical aerospace appli- cations,” ”,ProgressinAerospaceSciences128, 2020;56(10):3029–49 .
    • M. Mazzoleni , Y. Maccarana , F. Previdi (2021), “A comparison of data- driven fault detection methods with application to aerospace electromagnetic actuators,” ”,ProgressinAerospaceSciences128, 2020;12797–12802 .
    • Takehisa Yairi, Naoya Takeishi,(2021), “A Data-Driven Health Monitoring Method for Satellite Housekeeping Data Based on Probabilistic Clustering and Dimensionality Reduction,” ”,JapanAerospaceExplorationAgency,Tsukuba,Japan., 2020;12797–12802 .
    • Yassine meraihi,Asma Bennard(2021), “Grasshopper Optimization Al- gorithm: Theory, Variants, and Applications ,” ”,ACCESS.2021.3067597., 2022;12797–12802 .



    How to Cite This Article:
    Silna.KV, Limna Das.P . Fault Detection of Aerospace Systems Based on Binary Grasshopper Optimization Algorithm . ijetms;7(2):845-853. DOI: 10.46647/ijetms.2023.v07i02.094