International Journal of Engineering Technology and Management Sciences

2023, Volume 7 Issue 3

Implementation of Three-Phase AC-to-DC Matrix Rectifiers Using Space Vector Modulation: A Review

AUTHOR(S)

S.Singh, M.Gautam

DOI: https://doi.org/10.46647/ijetms.2023.v07i03.004

ABSTRACT
Matrix converter is a versatile scheme consisting of controlled semiconductor devices that has a command in delivering input of constant amplitude and frequency to the output of three phase with adjustable amplitude and frequency and it is able to produce multiple output frequencies with single input frequency. In the recent trends of power electronics, the use of these converters is increased vastly due to its versatile behaviour. During the past years the utilization of these converters are increased rapidly as they have several applications in industries. This paper presents the literature assessments of matrix converter and configurations discussed in the early stages of research. Also, the performance indices like power factor improvement, harmonic content in the output voltage, absence of energy storage elements and DC link between input and output stages of the system has been clearly discussed.

Page No: 26 - 32

References:

    • Zukerberger A, Weinstock D, Alexandrovitz A. Single‐phase matrix converter. Proc Inst Electr Eng Electr Power Appl. 1997;144(4):235‐240.
    • Nguyen M‐K, Jung Y‐G, Lim Y‐C, et al. A single‐phase Z‐source buck‐boost matrix converter. IEEE Trans Power Electron, Feb. 2010;25(2):453‐462.
    • Ahmed HF, Cha H, Khan AA, Kim J, Cho J. A single‐phase buck‐boost matrix converter with only six switches and without commutation problem. IEEE Trans Power Electron. Feb. 2017;32(2):1232‐1244.
    • Ahmed HF, Cha H, Khan AA. A single‐phase buck matrix converter with high‐frequency transformer isolation and reduced switch count. IEEE Trans Ind Electron, Sep. 2017;64(9):6979‐6988.
    • Gupta RK, Mohapatra KK, Somani A, Mohan N. Direct‐matrix converter‐based drive for a three‐phase open‐end‐winding ac machine with advanced features. IEEE Power Ind Electron. 2010;57(12):4032‐4042.
    • Vijayagopal M, Zanchetta P, Empringham L, de Lillo L, Tarisciotti L, Wheeler P. Control of a direct matrix converter with modulated model‐predictive control. IEEE Trans Ind Appl, May‐June. 2017;53(3):2342‐2349.
    • Kolar JW, Baumann M, Schameister F, Ertl H. Novel three‐phase AC‐DC‐AC sparse matrix converter—Part I and II. In: Proc. APEC, Dallas, TX; Mar. 2002, pp. 777–791.
    • Tarisciotti L, Lei J, Formentini A, et al. Modulated predictive control for indirect matrix converter. IEEE Trans Ind Appl, Sept.‐Oct. 2017;53(5):4644‐4654.
    • Aleem Z, Winberg S, Iqbal A, Al‐Hitmi MA, Hanif M. Single‐phase transformer-based HF‐isolated Z‐ source inverters with voltage clamping techniques for solar PV applications. IEEE Trans Ind Electron. 2019. https://doi.org/10.1109/TIE.2018.2889615.
    • J. Rzasa, “Capacitor clamped multilevel matrix converter controlled with Venturini method,” in Proc. 13th EPE PEMC, Sep. 2008, pp. 357–364.
    • F. Bradaschia, E. Ibarra, J. Andreu, I. Kortabarria, E. Ormaetxea, and M. Cavalcanti, “Matrix converter: Improvement of the space vector modulation via a new double-sided generalized scalar PWM,” in Proc. 35th IEEE IECON, Nov. 2009, pp. 4511–4516.
    • K. Mohapatra, P. Jose, A. Drolia, G. Aggarwal, and S. Thuta, “A novel carrier-based PWM scheme for matrix converters that is easy to implement,” in Proc. 36th IEEE Power Electron. Spec. Conf., Jun. 2005, pp. 2410–2414.
    • H. Nguyen, H.-H. Lee, and T.-W. Chun, “An investigation on direct space vector modulation methods for matrix converter,” in Proc. 35th IEEE IECON, Nov. 2009, pp. 4493–4498.
    • D. Casadei, G. Serra, and A. Tani, “The use of matrix converters in direct torque control of induction machines,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1057–1064, Dec. 2001.
    • R. Vargas, U. Ammann, B. Hudoffsky, J. Rodriguez, and P. Wheeler, “Predictive torque control of an induction machine fed by a matrix converter with reactive input power control,” IEEE Trans. Power Electron., vol. 25, no. 6, pp. 1426–1438, Jun. 2010.
    • J. Rodriguez, J. Kolar, J. Espinoza, M. Rivera, and C. Rojas, “Predictive current control with reactive power minimization in an indirect matrix converter,” in Proc. IEEE ICIT, Mar. 2010, pp. 1839–1844.
    • Rivera, M., Tarisciotti, L., Wheeler, P., et al.: ‘Predictive control of an indirect matrix converter operating at fixed switching frequency’. 2015 IEEE 5th Int. Conf. Power Engineering, Energy and Electrical Drives (POWERENG), Riga, Latvia, May 2015, pp. 635–640.
    • Olloqui, A., Elizondo, J.L., Rivera, M., et al.: ‘Modulated model predictive rotor current control (M 2 PC) of a DFIG driven by an indirect matrix converter with fixed switching frequency’. IEEE Annual Southern Power Electronics Conf. (SPEC), Auckland, New Zealand, December 2016, pp. 1–6.
    • Vijayagopal, M., Empringham, L., de Lillo, L., et al.: ‘Current control and reactive power minimization of a direct matrix converter induction motor drive with modulated model predictive control’. 2015 IEEE Int. Symp. Predictive Control of Electrical Drives and Power Electronics (PRECEDE), Valparaiso, Chile, October 2015, pp. 103–108.
    • Kammerer, F.; Kolb, J.; Braun, M. A novel cascaded vector control scheme for the Modular Multilevel Matrix Converter In Proceedings of the IECON Proceedings (Industrial Electronics Conference), Melbourne, VIC, Australia, 7–10 November 2011; pp. 1097–1102.
    • Diaz, M.; Cardenas, R.; Espinoza, M.; Hackl, C.M.; Rojas, F.; Clare, J.C.; Wheeler, P. Vector control of a modular multilevel matrix converter operating over the full output-frequency range. IEEE Trans. Ind. Electron. 2019, 66, 5102–5114.
    • Soto, D.; Borquez, J. Control of a modular multilevel matrix converter for high power applications. Stud. Inform. Control 2012, 21, 85–92.
    • Kawamura, W.; Chen, K.L.; Hagiwara, M.; Akagi, H. A Low-Speed, High-Torque Motor Drive Using a Modular Multilevel Cascade Converter Based on Triple-Star Bridge Cells (MMCC-TSBC). IEEE Trans. Ind. Appl. 2015, 51, 3965–3974.
    • Kammerer, Felix; Gommeringer, M.K.J.B.M. Overload Capability of the Modular Multilevel Matrix Converter for Feeding High Torque Low Speed Drives. In Proceedings of PCIM South America, Sao Paulo, Brazil, 14–15 October 2014; pp. 20–27.
    • Mora, A.; Urrutia, M.; Cardenas, R.; Angulo, A.; Espinoza, M.; Diaz, M.; Lezana, P. Model-predictive-control-based capacitor voltage balancing strategies for modular multilevel converters. IEEE Trans. Ind. Electron. 2019, 66, 2432–2443.
    • Fan, B.; Wang, K.; Wheeler, P.; Gu, C.; Li, Y. An Optimal Full Frequency Control Strategy for the Modular Multilevel Matrix Converter Based on Predictive Control. IEEE Trans. Power Electron. 2018, 33, 6608–6621.
    • J. Zhang, H. Yang, T. Wang, L. Li, and D. G. Dorrell, "Field oriented control based on hysteresis band current controller for a permanent magnet synchronous motor driven by a direct matrix converter," IET Power Electronics, DOI: 10.1049/iet-pel.2017.0651, 2018.
    • S. A. Davari, D. A. Khaburi, and R. Kennel, “An improved FCS-MPC algorithm for induction motor with imposed optimized weighting factor,” IEEE Trans. Power. Electron., vol. 27, no. 3, pp. 1540–1551, Mar. 2012.
    • M. Siami, H. K. Savadkoohi, A. Abbaszadeh, D. A. Khaburi, J. Rodriguez and M. Rivera, "Predictive torque control of a permanent magnet synchronous motor fed by a matrix converter without weighting factor," 2016 7th Power Electronics and Drive Systems Technologies Conference (PEDSTC), 2016, pp. 614-619, doi: 10.1109/PEDSTC.2016.7556930.

    B. Fan, K. Wang, Z. Zheng, L. Xu and Y. Li, "Optimized Branch Current Control of Modular Multilevel Matrix Converters Under Branch Fault Conditions," in IEEE Transactions on Power Electronics, vol. 33, no. 6, pp. 4578-4583, June 2018, doi: 10.1109/TPEL.2017.2769117.


    How to Cite This Article:
    S.Singh, M.Gautam .Implementation of Three-Phase AC-to-DC Matrix Rectifiers Using Space Vector Modulation: A Review . ijetms;7(3):26-32. DOI: 10.46647/ijetms.2023.v07i03.004