
International Journal of Engineering Technology and Management Sciences
Website: ijetms.in Issue: 3 Volume No.7 May - June – 2023

DOI:10.46647/ijetms.2023.v07i04.026 ISSN: 2581-4621

@2023, IJETMS | Impact Factor Value: 5.672 | Page 166

IMPLEMENTATION OF HIGH

PERFORMANCE POSIT-MULTIPLIER

Vinotheni M S1, Karthika K2

1Teaching Fellow - Electronics Engineering, Anna University-MIT campus ,Chennai.
2Assistant Professor- Department of ECE- Mohamed Sathak A J College of Engineeing, Chennai.

Corresponding Author Orcid ID : 1. https://orcid.org/0000-0002-0550-8175

2. https://orcid.org/0000-0002-2749-6128

ABSTRACT

To represent real numbers, practically all computer systems now employ IEEE-754 floating point.

Posit has recently been offered as an alternative to IEEE-754 floating point because it provides

higher accuracy and a wider dynamic range. The use of not-a-numbers (NaN's) is one of the most

common , having too many of them wastes valuable bit patterns in floating point format. As an

alternative to floating point, a system known as "Universal Numbers'' or UNUMs was developed.

There are three variations of this system, but in terms of hardware compatibility, Type III(POSIT) is

the best substitute for floating point. By employing only one bit pattern, this approach overcomes

the NaN problem associated with floating point format. An IEEE float FPU requires 22.2% more

circuitry than a posit processing unit. The proposed posit multiplier consumes 28.5% less power

compared to corresponding IEEE Floating point format. The number of posit operations per

second(POPS) handled by a device can be ubstantially larger than the number of FLOPS due to

lower power consumption. In this paper, High performance Posit multiplier is implemented and

compared with normal Floating point multiplier.

Keywords—Floating point, NaN, UNUMs, Posit Multiplier

1. INTRODUCTION

Non-integer numbers must be represented in a format that digital processors can understand.

Floating point, a binary version of scientific notation, has been the standard for decades.Over the

years, this format has had only minor changes, such as various bit widths or new operations such as

fused operations. The format was developed by a group in the mid-1980s, taking into account

current technologies. That has altered dramatically while the format has remained unchanged,

allowing for a plethora of optimizations.While there are a variety of different formats for particular

applications, such as fixed point, there are few that challenge fixed point as a standard.

As an alternative, Universal Numbers (Unums) were proposed. They were created as two distinct

sorts at first. The first was developed as a superset of floating point, allowing for higher range and

accuracy while requiring even more technology than floating point.The second type relies on

positional bit patterns rather than actual data transfer. This allows for highly quick computations,

but it relies on look-up tables, limiting the size of operations. As a result, a third Unum type called

Posits was born.

This study compares a floating point implementation of the Posit number system against a hardware

implementation. Both floating point and posit systems will be evaluated for area, power, and other

factors.

The goal of designing and testing both a floating point and posit unit is to demonstrate a side-by-

side comparison so that the costs and benefits of each may be understood.The following is a list of

the research tasks [1] to gain an understanding of floating point merits and problems [2] to gain an

understanding of posit merits and problems [3] to design floating point and posit arithmetic cores

[4] Fully test and analyze both cores and Compare analysis results and discuss.

https://orcid.org/0000-0002-2749-6128

International Journal of Engineering Technology and Management Sciences
Website: ijetms.in Issue: 3 Volume No.7 May - June – 2023

DOI:10.46647/ijetms.2023.v07i04.026 ISSN: 2581-4621

@2023, IJETMS | Impact Factor Value: 5.672 | Page 167

2. BACKGROUND
Figure 2.1 shows the 3 parts of IEEE-754 floating point representation: sign, exponent and

mantissa. Single precision floats have 1 sign bit, 8 exponent bits and 23 mantissa bits. For more

details we refer the reader to see the reference papers of [2], [9].

 Sign Exponent Mantissa

Fig 2.1 Floating Point Bit Pattern

A generic Posit format consists of a sign bit, one or multiple regime bits, optional exponent bits and

optional fraction bits (Fig. 2.2). The sign bit defines the number as being either positive (0) or

negative (1). After the sign bit there is a dynamic number of sequential 1s or 0s r followed by a

terminating bit of the other sign r, this is the regime. The number of bits for the exponent and

fraction is also dynamic, and might be zero if required.

n bits

S rr…r̄ e1e2….ees f1f2…

 Sign Regime Exponent Mantissa

 Bits Bits Bits Bits

Fig 2.2 Posit Bit Pattern

The regime is a sequence of m r-bits, where r ∈ (0, 1) followed by a r̄ of the other sign to terminate

the sequence. Let R be a regime consisting of m r-bits. If r is 1, the value represented by R is the

positive value of (m - 1). If r is 0, the value is instead the negative value -m. Thus, regimes with a

leading 0 represent a negative value and regimes with a leading 1 represent a positive value (table

2.1).

Table 2.1 Posit Regime Decoding

The regime denotes a scale factor of useed k, where useed is the unit of measurement.The regime is

then combined to a scale factor useedR, where useed = 22es and es is the number of bits in the

exponent E.

Table 2.2 Posit value of used

es 0 1 2 3 4

useed 2 22=4 42=16 162=25

6

2562=65536

The next bits (color-coded blue) are the exponent e, regarded as an unsigned integer. There is no

bias as there is for floats; they represent scaling by 2 e. There can be up to (es) exponent bits,

depending on how many bits remain to the right of the regime. This is a compact way of expressing

tapered accuracy.Like in IEEE 754 the Posit format can have a variable number of exponent bits.

However, there is no predefined rule that states how many exponent bits there must be. A Posit

exponent may consist of up to es number of bits, forming the decimal value e. The remaining bits

International Journal of Engineering Technology and Management Sciences
Website: ijetms.in Issue: 3 Volume No.7 May - June – 2023

DOI:10.46647/ijetms.2023.v07i04.026 ISSN: 2581-4621

@2023, IJETMS | Impact Factor Value: 5.672 | Page 168

after the exponent make up for the fraction f. Like IEEE 754 the fraction is normalized, and the

leading 1 is always omitted in the encoding.

2. LITERATURE SURVEY
 [1]This paper proposes open- source hardware Posit Arithmetic Core Generator(PACoGen)

for the lately developed universal number posit number system, along with a set of pipelined

architectures. The posit number system is composed of a run- time varying exponent element,

which is defined by a composition of varying length ‘‘ regime- bit ’’ and ‘‘ exponent- bit ’’(with a

maximum size of ES bits, the exponent size). This in effect also makes the fraction part to vary at

run- time in size and position. In this view, this paper targets algorithmic development and general

HDL creators(PACoGen) for basic posit arithmetic.. The PACoGen can deliver the Verilog HDL

code respective posit arithmetic for any given posit word range(N) and exponent size(ES), as

defined under the posit number system. further, pipelined infrastructures of 32- bit posit with 6- bit

exponent size are also proposed and bandied for addition/ deduction, addition, and division

computation. The proposed posit computation infrastructures are demonstrated on the Virtex- 7(

xc7vx330t- 3ffg1157) FPGA device as well as Nangate 15 nm ASIC platform.

[2] In this paper, a power effective posit multiplier configuration is proposed.Posit number system

has been used as an alternative to IEEE floating- point number system in numerous operations,

especially the recent popular deep learning. Among all the affiliated computation operations,

addition is one of the most frequent operations used in operations. Still, due to the bit- range

flexibility of posit arithmetic, the tackle multiplier is generally designed with the maximum

possible mantissa bit- range. The mantissa multiplier is still designed for the maximum possible

bit- range, the whole multiplier is divided into multiple lower multipliers. This design approach is

applied to 8- bit, 16- bit, and 32- bit posit formats in this brief and an average of 16 power

reduction can be achieved with negligible area and timing overhead.

[3] This paper focuses on the design and implementation of a high-speed floating-point multiply-

accumulator (MAC) using field-programmable gate arrays (FPGAs).The authors aim to develop an

efficient and high-performance MAC unit that can perform floating-point multiplication and

accumulation operations quickly.The paper begins with an introduction to the importance of MAC

units and the need for high-speed implementations. The proposed design in the paper focuses on

reducing the critical path delay, which directly impacts the speed of the MAC unit. The authors

present a novel architecture that employs pipelining and parallelism techniques to improve the

performance. They used a Xilinx Virtex-7 FPGA for implementation and performed various tests to

measure the speed, area utilization, and power consumption of their MAC unit. The results

demonstrate that the proposed design outperforms previous designs in terms of speed while

maintaining reasonable area utilization and power efficiency.

[4]This work presents the design and algorithm of a novel parameterized and pipelined Posit fused

multiply and accumulate (P-FMA) unit.The P-FMA unit is a fused functional unit that performs

addition, subtraction, multiplication, and multiply-and-accumulate operations. The design

incorporates a 5-stage pipeline and is parameterized to allow flexibility. The P-FMA unit has also

been synthesized on an FPGA and compared with other contemporary Posit FMAs. It exhibits a

lesser critical path and comparable area utilization. The accuracy of the Posit FMA unit is evaluated

by estimating Pi (π) using the Chudnovsky algorithm. The Pi estimates from Posit (64, es=1 to 6)

are compared with an IEEE 754 FPU (double precision) based Pi estimate. The results show that the

P-FMA, when integrated with other Posit units, enables computing Pi to 16-digit accuracy,

surpassing the 15-digit accuracy of IEEE Double-Precision floats achieved with Y-Cruncher.This

unit has been thoroughly verified and synthesized on an FPGA, showcasing its potential for high-

performance arithmetic computations.

International Journal of Engineering Technology and Management Sciences
Website: ijetms.in Issue: 3 Volume No.7 May - June – 2023

DOI:10.46647/ijetms.2023.v07i04.026 ISSN: 2581-4621

@2023, IJETMS | Impact Factor Value: 5.672 | Page 169

[5] This paper proposes an iterative approach to reduce hardware resources in a posit multiplier. It

dynamically adjusts the number of truncated bits in the fraction component based on the number of

regime bits to leverage the features of the posit format. This paper presents architectures for a fast

parser and packer. By utilizing the posit format, the proposed design achieves a dynamic range

approximately 60 decades wider than a single-precision floating-point multiplier design. The

proposed iterative approach reduces the number of lookup tables by 44% while achieving a 51%

higher maximum frequency. Moreover, the design allows for a fine balance between latency and

accuracy at runtime.

3. POSIT MULTIPLIER

A. Multiplication Algorithm (introduction)

The posit multiplier arithmetic has three main processing sections, similar to the posit adder

arithmetic: posit extraction, core arithmetic, and posit creation. The posit multiplier generator's

algorithmic computational flow. The extraction of posit data has been completed. It includes the

operands complemented form (XIN1, XIN2, for negative posit), sign bits (S1, S2), regime check

bits (RC1, RC2), absolute regime sequence values (R1, R2), exponent values (E1, E2), mantissas

(M1, M2), infinity & zero check bits, and infinity & zero check bits (Inf1, Inf2, Z1, Z2).

The multiplication Algorithm involves two blocks:

● Input Extraction Block

● Posit Multiplication Main Block

B. Input Extraction Block

The extraction of components in hardware arithmetic units is more difficult than in floating-point

format. The circuit for extracting each component of a posit number.If the number is negative, it is

complemented first. The regime is then extracted first. A succession of ones (zeroes) is followed by

a single zero (one) bit in the regime section.

Fig 4.1 Extraction Block Diagram

C. Posit Multiplication Main Block

The suggested posit multiplier's parameterized Datapath is demonstrated. Posit component

extraction, mantissa multiplier, final adder and normalization, posit component packing, and

rounding are all part of the critical route.Furthermore, the sign and exponent are treated

individually. The mantissa multiplier is a modified Booth multiplier with (nb - es) bits of radix

4.The bit-width of the mantissa in posit format changes according to the value. As a result, a (nb -

es)-bit multiplier is not always required for the mantissa.

To count the number of leading bits, a leading zero detector (LZD) and a leading one detector

(LOD) are utilized. If leading ones are found, rg equals count-1. Otherwise, rg is count, and to

International Journal of Engineering Technology and Management Sciences
Website: ijetms.in Issue: 3 Volume No.7 May - June – 2023

DOI:10.46647/ijetms.2023.v07i04.026 ISSN: 2581-4621

@2023, IJETMS | Impact Factor Value: 5.672 | Page 170

convert a positive count to a negative rg number, a complementer, COMP, is required.In addition,

the count+1 regime bit-width shift rg is constructed, allowing the regime to be eliminated and the

exponent and mantissa to be acquired using a shifting operation.

Fig 4.2 Block Diagram Of Posit Multiplier

 The bit-width of the regime varies from 2-bit to (nb - 1)-bit.The final extracted mantissa is (nb -

es)-bit to handle all instances. A (nb - es)-bit mantissa multiplier will be utilized in a posit multiplier

or multiply-accumulate unit architecture.

Fig 4.3 Block Diagram Of Floating Point Multiplier

D. Posit Multiplier Algorithm

The computational flow for the multiplication of Posit number is given below :

1: GIVEN:

2: N: Posit Word Size

3: ES: Posit Exponent Field Size

4: RS: log2 (N) (Posit Regime Value Store Space Bit Size)

5: Input Operands: IN1, IN2

6: Posit Data Extraction:

International Journal of Engineering Technology and Management Sciences
Website: ijetms.in Issue: 3 Volume No.7 May - June – 2023

DOI:10.46647/ijetms.2023.v07i04.026 ISSN: 2581-4621

@2023, IJETMS | Impact Factor Value: 5.672 | Page 171

7: IN1 → XIN1, S1, RC1, R1, E1, M1, Inf1, Z1

8: IN2 → XIN2, S2, RC2, R2, E2, M2, Inf2, Z2

9: Z ← Z1&Z2 Inf ← Inf 1|Inf 2

Core multiplication arithmetic is performed on the extracted components. A 1- bit xor operation

among input sign bits is required for the sign-bit computation (Line 12). A (N-ES-2)X(N-ES-2)

integer multiplier (Line 14) is required for mantissa multiplication, and the output MSB bit is

checked for any mantissa multiplication overflow (Line 15). For correct normalizing, the mantissa

is left shifted by one bit for mantissa multiplication overflow (Line 16) , and the final exponent

computation is incremented by one bit (Line 20).

10: Posit Core Multiplier Arithmetic Processing:

11: Sign Processing:

12: S ← S1 xor S2

13: Mantissa Multiplication Processing:

14: M ← M1×M2 (Mantissa Multiplication

15: Movf ← M[MSB] (Check Mantissa Overflow)

16: M ← Movf ? M : M << 1 (1-bit Mantissa Shifting for overflow)

17: Final EXPONENT (E_O) and REGIME (R_O) Processing:

18: RG1 ← RC1 ? R1 : -R1 (Effective regime-1 value)

19: RG2 ← RC2 ? R2 : -R2 (Effective regime-2 value)

20: Exp_O[ES + RS + 1:0]←{RG1, E1} + {RG2, E2} + Movf (Total Exponent value) 21:

Exp_ON[ES + RS:0] = Exp_O[ES + RS + 1] ? - Exp_O : Exp_O

(Absolute Total Exponent Value)

22: E_O[ES-1:0] = (Exp_O[ES + RS + 1] & (|Exp_ON[ES1:0])) ?

Exp_O[ES-1:0] : Exp_ON[ES-1:0] (Exponent Output)

23: R_O[RS:0] = !(Exp_O[ES + RS + 1]) | (Exp_O[ES + RS + 1] &

(|Exp_ON[ES-1:0])) ? Exp_ON[ES + RS:ES] + 1’b1 : Exp_ON[ES + RS:ES]

(Absolute Regime Value)

The real regime values (RG1 and RG2) are first obtained utilizing respective regime check bits and

absolute regime value for the exponent computation (Lines 18-19). These regime values are

combined with their corresponding exponents (E1, E2) to yield effective exponent values for each

operand, which are then added to the Movf bit (mantissa overflow) to yield the total output

exponent value, Exp_O. (Line 20). Lines 21-23 compute the ES-bit exponent output E_O and

absolute regime output value R_O using Algorithm-6 and the total output exponent value Exp_O.

24:Posit Construction, Rounding and Final Processing:

25: S, R_O, Exp_O, E_O, M

26: Posit Data Composition:

27: REGIME, EXPONENT and MANTISSA Packing:

28: REM ←N+1 Bits Regime Sequence z }| { N{!Exp_O[MSB]},

Exp_O[MSB], Exponent − Mantissa z }| { E_O, M[(N-ES-2) bits MSBs],

GRS−Bits z }| { M[Next 2 bits],|(M[:0])

29: REM ← REM >> R_O

30: Rounding: Round to nearest even

31: IF (R_O < N-ES-2)

32: ULP_add = G.(R + S) + L.G.(!(R + S))

33: REM ← REM + {(N-1)’b0,ULP_add}

34: REM ← (LS == 0) ? REM : 2’s Complement of REM

35: Final Output:

36: Combine LS with MSB (N − 1) bit of rounded REM

37: Discharge Output while considering Exceptions

The posit creation, rounding, and final processing are all done after the fundamental arithmetic

processing.

International Journal of Engineering Technology and Management Sciences
Website: ijetms.in Issue: 3 Volume No.7 May - June – 2023

DOI:10.46647/ijetms.2023.v07i04.026 ISSN: 2581-4621

@2023, IJETMS | Impact Factor Value: 5.672 | Page 172

4. RESULTS AND DISCUSSION

4.1 RTL DESIGN

Fig 4.1: Floating Point Multiplier RTL Fig 4.2: Posit Multiplier RTL

4.2 MULTIPLICATION OUTPUT

4.2.1 FLOATING MULTIPLIER OUTPUT

Fig 4.3: Floating Point Multiplier Output (16 bits)

International Journal of Engineering Technology and Management Sciences
Website: ijetms.in Issue: 3 Volume No.7 May - June – 2023

DOI:10.46647/ijetms.2023.v07i04.026 ISSN: 2581-4621

@2023, IJETMS | Impact Factor Value: 5.672 | Page 173

4.2.2 POSIT MULTIPLIER OUTPUT

Fig 4.4 : Data Extraction Output Fig 4.5: Posit Multiplication Output

(16 bits) (16 bits)

4.3 POWER OUTPUT

Fig 4.6 : Floating PointPower Output Fig 4.7: Posit Power Output

Posit is a recent development in numerical computing and has shown some significant benefit over

IEEE-754 floating point standard. Posits outperformed floats at their own game: doing

calculations by guesswork and rounding errors. Posits feature better closure, a wider dynamic

International Journal of Engineering Technology and Management Sciences
Website: ijetms.in Issue: 3 Volume No.7 May - June – 2023

DOI:10.46647/ijetms.2023.v07i04.026 ISSN: 2581-4621

@2023, IJETMS | Impact Factor Value: 5.672 | Page 174

range, and higher precision. They can be utilized to generate more accurate results using the

same amount of bits as floats, or (what may be even more convincing) an equally sound response

with less information. Given that present-day systems With limited bandwidth, employing smaller

operands results in faster processing and less power use. Posits avoid the main flaw of the IEEE

754 float definition by producing bitwise-reproducible results across computing platforms. The

circuitry required for quick hardware is decreased by the simpler and more elegant design of posits

compared to floats. Floats may already be commonplace, but posits may soon render them obsolete.

4.4 COMPARATIVE ANALYSIS

Table 5.1 Comparative Analysis Of Ieee 754 And Posit Format

PARAMETER Floating point - IEEE 754

Format

Flaoting Point -

Posit Format

No. of bonded IOBs (Available

-300)

259 259

No. of slice LUTs used

(Available -134600)

14235 8814

Total on chip Power(W) 28.57 20.82

Delay(ns) 22.08 21.12

Fig 4.9 Power And Delay Analysis of IEEE 754 And Posit Format

The comparative analysis of area, power and delay of Floating point IEEE 754 and Posit Format is

shown in Fig 5.9. Compare to IEEE 754 Standard, the implemented design of posit multiplier have

reduced area, power and delay.

 5 .CONCLUSION AND FUTURE SCOPE

The implemented design is having total power consumption of 21.307 W and a generic Floating

point multiplier is having a power consumption of 28.844 W, therefore a 26.13% of power

reduction is achieved. The area is also reduced. For the same number of inputs Posits can achieve

higher accuracy with less power and area, which leads to its more efficient usage in the deep

learning process and Graphical processing units. The future plan is to implement this in an FPGA

International Journal of Engineering Technology and Management Sciences
Website: ijetms.in Issue: 3 Volume No.7 May - June – 2023

DOI:10.46647/ijetms.2023.v07i04.026 ISSN: 2581-4621

@2023, IJETMS | Impact Factor Value: 5.672 | Page 175

and use it in the general processing where the Floating point system is in use currently. It would be

interesting to see Posits used in a custom processor core built specifically for neural nets and deep

learning applications.

Future works can be implementing a complete architecture of ALU or micro architecture using

complete POSIT architecture. The data processing for neural nets are very computationally heavy

and rely primarily on Floating Point units. Some alternatives have been used such as a variable

precision FPU. There has been some work using Posits which performed significantly better than

a comparable fixed-point computational unit or when using a dedicated Posit multiply-accumulator

unit. We have implemented the Posit multiplier by extracting the input using the extraction block.

The regime and the exponent are processed in the exponent processing block, the mantissa is

multiplied using the multiplier. Finally, all the components are packed and the final output is given

as output. By comparing the floating point and posit multiplier, we are seeing significant reduction

in the power and area.

References

[1] M. K. Jaiswal and H. K. -. So, "PACoGen: A Hardware Posit Arithmetic Core Generator," in

IEEE Access, vol. 7 , pp. 74586-74601 , 2019 , doi:10.1109 /ACCESS.2019.2920936.

[2] H. Zhang and S. -B. Ko, "Design of Power Efficient Posit Multiplier,"in IEEE Transactions on

Circuits and Systems II: Express Briefs , vol.67 , no. 5 , pp. 861-865 , May 2020, doi:

10.1109/TCSII.2020.2980531.

[3] B. Zhou, G. Wang, G. Jie, Q. Liu and Z. Wang, "A High-Speed Floating-Point Multiply-

Accumulator Based on FPGAs," in IEEE Transactions on Very Large Scale Integration (VLSI)

Systems , vol. 29,no. 10, pp. 1782-1789,Oct.2021, doi: 10.1109/TVLSI.2021.3105268.

[4] S. Jean et al., "P-FMA: A Novel Parameterized Posit Fused Multiply-Accumulate Arithmetic

Processor," 2021 34th International Conference on VLSI Design and 2021 20th International

Conference on Embedded Systems (VLSID) , 2021, pp. 282-287, doi:

10.1109/VLSID51830.2021.00053.

[5] C. J. Norris and S. Kim, "An Approximate and Iterative Posit Multiplier Architecture for

FPGAs," 2021 IEEE International Symposium on Circuits and Systems (ISCAS),2021,pp.1-

5,doi:10.1109/ISCAS51556.2021.9401158.

[6] V. Gohil, S. Walia, J. Mekie and M. Awasthi, "Fixed-Posit: A Floating-Point Representation for

Error-Resilient Applications," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol.

68 , no.

10 , pp. 3341-3345 , Oct. 2021 , doi: 10.1109/TCSII.2021.3072217.

[7] Research Website for POSIT development https://posithub.org/

[8] Decimal to Posit converter https://posithub.org/widget/plookup

[9] Beating Floating Point at its Own Game: Posit Arithmetic 1. Background: Type I and Type II

Unums

[10] Wagner, Matt, "Posits: An Alternative to Floating Point Calculations" (2020). Thesis.

Rochester Institute of Technology.

[11] “Beating Floating Point at its Own Game: Posit Arithmetic” John L. Gustafson1 , Isaac

Yonemoto2

[12] Beyond Floating Point: Next-Generation Computer Arithmetic. Speaker: John L. Gustafson,

National University of Singapore. https://youtu.be/aP0Y1uAA-2Y .

[13] Vo Ngoc Mai Anh; Hoang Kim Ngoc Anh; Vo Nhat Huy; Huynh Gia Huy; Minh Ly.

"Improve Productivity and Quality Using Lean Six Sigma: A Case Study". International Research

Journal on Advanced Science Hub, 5, 03, 2023, 71-83. doi: 10.47392/irjash.2023.016

[14] Swathi Buragadda; Siva Kalyani Pendum V P; Dulla Krishna Kavya; Shaik Shaheda

Khanam. "Multi Disease Classification System Based on Symptoms using The Blended

https://posithub.org/widget/plookup

International Journal of Engineering Technology and Management Sciences
Website: ijetms.in Issue: 3 Volume No.7 May - June – 2023

DOI:10.46647/ijetms.2023.v07i04.026 ISSN: 2581-4621

@2023, IJETMS | Impact Factor Value: 5.672 | Page 176

Approach". International Research Journal on Advanced Science Hub, 5, 03, 2023, 84-90. doi:

10.47392/irjash.2023.017

[15] Susanta Saha; Sohini Mondal. "An in-depth analysis of the Entertainment Preferences

before and after Covid-19 among Engineering Students of West Bengal". International Research

Journal on Advanced Science Hub, 5, 03, 2023, 91-102. doi: 10.47392/irjash.2023.018

[16] Pavan A C; Lakshmi S; M.T. Somashekara. "An Improved Method for Reconstruction and

Enhancing Dark Images based on CLAHE". International Research Journal on Advanced Science

Hub, 5, 02, 2023, 40-46. doi: 10.47392/irjash.2023.011

[17] Pravin T, M. Subramanian, R. Ranjith, Clarifying the phenomenon of Ultrasonic Assisted

Electric discharge machining, “Journal of the Indian Chemical Society”, Volume 99, Issue 10,

2022, 100705, ISSN 0019-4522, Doi: 10.1016/j.jics.2022.100705

[18] R. Devi Priya, R. Sivaraj, Ajith Abraham, T. Pravin, P. Sivasankar and N. Anitha.

"MultiObjective Particle Swarm Optimization Based Preprocessing of Multi-Class Extremely

Imbalanced Datasets". International Journal of Uncertainty, Fuzziness and Knowledge-Based

Systems Vol. 30, No. 05, pp. 735-755 (2022). Doi: 10.1142/S0218488522500209

[19] T. Pravin, C. Somu, R. Rajavel, M. Subramanian, P. Prince Reynold, Integrated Taguchi

cum grey relational experimental analysis technique (GREAT) for optimization and material

characterization of FSP surface composites on AA6061 aluminium alloys, Materials Today:

Proceedings, Volume 33, Part 8, 2020, Pages 5156-5161, ISSN 2214-7853,

https://doi.org/10.1016/j.matpr.2020.02.863.

[20] Rajashekhar, V., Pravin, T., Thiruppathi, K.: A review on droplet deposition manufacturing

a rapid prototyping technique. Int. J. Manuf. Technol. Manage. 33(5), 362–383 (2019)

https://doi.org/10.1504/IJMTM.2019.103277

[21] V.S. Rajashekhar; T. Pravin; K. Thiruppathi , “Control of a snake robot with 3R joint

mechanism”, International Journal of Mechanisms and Robotic Systems (IJMRS), Vol. 4, No. 3,

2018. Doi: 10.1504/IJMRS.2018.10017186

[22] Subha S; Sathiaseelan J G R. "The Enhanced Anomaly Deduction Techniques for Detecting

Redundant Data in IoT". International Research Journal on Advanced Science Hub, 5, 02, 2023,

47-54. doi: 10.47392/irjash.2023.012

[23] Nguyen Kieu Viet Que; Nguyen Thi Mai Huong; Huynh Tam Hai; Vo Dang Nhat Huy; Le

Dang Quynh Nhu; Minh Duc Ly. "Implement Industrial 4.0 into process improvement: A Case

Study in Zero Defect Manufacturing". International Research Journal on Advanced Science Hub, 5,

02, 2023, 55-70. doi: 10.47392/irjash.2023.013

[24] Ayush Kumar Bar; Avijit Kumar Chaudhuri. "Emotica.AI - A Customer feedback system

using AI". International Research Journal on Advanced Science Hub, 5, 03, 2023, 103-110. doi:

10.47392/irjash.2023.019

[25] Rajarshi Samaddar; Aikyam Ghosh; Sounak Dey Sarkar; Mainak Das; Avijit Chakrabarty.

"IoT & Cloud-based Smart Attendance Management System using RFID". International Research

Journal on Advanced Science Hub, 5, 03, 2023, 111-118. doi: 10.47392/irjash.2023.020

https://doi.org/10.1016/j.matpr.2020.02.863

	Vinotheni M S1, Karthika K2
	1Teaching Fellow - Electronics Engineering, Anna University-MIT campus ,Chennai.
	2Assistant Professor- Department of ECE- Mohamed Sathak A J College of Engineeing, Chennai.
	ABSTRACT

