International Journal of Engineering Technology and Management Sciences

2023, Volume 7 Issue 4

DYNAMIC RESOURCE ALLOCATION ENERGY-EFFICIENT FRAMEWORK FOR GREEN CLOUD COMPUTING

AUTHOR(S)

VALLIKANNU AR

DOI: https://doi.org/10.46647/ijetms.2023.v07i04.089

ABSTRACT
Cloud Computing has been a trending technology for a few years supporting computational services over internet. But ever since its adoption, cloud’s consistent challenge is in its dynamic resource allocation. The existing cloud model details the online and offline algorithms used to decide the dynamic resource allocation. The goal is to have a dynamic resource allocation framework that aligns to cloud data management’s objective of maximizing revenue with minimum cost. This encourages both consumers and cloud providers not only with energy-efficient power usage but also high CPU utilization. This article discusses the impediments of migrating to Public Cloud, what is dynamic resource allocation, HPC workloads with complex communication path on cloud platform, and the benefits of bare metal platform for latency-sensitive applications. We shed light on trade-offs (compute balance) between Private and Public Cloud, how existing resources can be leveraged, Random forest (RF) solutions including a study on hybrid cloud computing capacity optimization framework. Understanding RL architecture, problem solving approach, learning structure and Hybrid Cloud Management Architecture framework are also explored. Also given are a few RL implemented gaming examples on how it makes an impact. Lastly, we shall do the comparisons of RL with other Machine Learning (ML) approaches.

Page No: 639 - 646

References:

      1. Alsaeedy, A. A. R., & Chong, E. (2020). Detecting Regions at Risk for Spreading COVID-19 Using Existing Cellular Wireless Network Functionalities. IEEE Open Journal of Engineering in Medicine and Biology, 1–1.
      2. Sear, R. F., Velasquez, N., Leahy, R., Restrepo, N. J., El Oud, S., Gabriel, N., … Johnson, N. F. (2020). Quantifying COVID-19 content in the online health opinion war using machine learning. IEEE Access, 1–1.
      3. Hu, S., Gao, Y., Niu, Z., Jiang, Y., Li, L., Xiao, X. … Yang, G. (2020). Weakly Supervised Deep Learning for COVID-19 Infection Detection and Classification from CT Images. IEEE Access, 1–1.

      4. Zhang, Y., Li, Y., Yang, B., Zheng, X., & Chen, M. (2020). Risk Assessment of COVID-19 Based On Multisource Data from a Geographical View. IEEE Access, 1–1.
      5. Abdel-Basset, M., Mohamed, R., Elhoseny, M., Chakrabortty, R. K., & Ryan, M. (2020). A hybrid COVID-19 detection model using an improved marine predator’s algorithm and a ranking-based diversity reduction strategy. IEEE Access, 1–1.
      6. F. Petropoulos and S. Makridakis, “Forecasting the novel coronavirus covid-19,” Plos one, vol. 15, no. 3, p. e0231236, 2020.
      7. G. Grasselli, A. Pesenti, and M. Cecconi, “Critical care utilization for the covid-19 outbreak in lombardy, italy: early experience and forecast during an emergency response,” Jama, 2020.
      8. C. P. E. R. E. Novel et al., “The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (covid-19) in china,” Zhonghua liu xing bing xue za zhi= Zhonghua liuxingbingxue zazhi, vol. 41, no. 2, p. 145, 2020.
      9. Y. Grushka-Cockayne and V. R. R. Jose, “Combining prediction intervals in the m4 competition,” International Journal of Forecasting, vol. 36, no. 1, pp. 178–185, 2020.
      10. N. C. Mediaite. Harvard professor sounds alarm on ‘likely’ coronavirus pandemic: 40% to 70% of world could be infected this year. Accessed on 2020.02.18. [Online]. Available: https://www.mediaite.com/news/harvardprofessor- sounds-alarm-on-likely-coronavirus-pandemic-40-to- 70-ofworld-could-be-infected-this-year/


      11. How to Cite This Article:
        VALLIKANNU AR . DYNAMIC RESOURCE ALLOCATION ENERGY-EFFICIENT FRAMEWORK FOR GREEN CLOUD COMPUTING . ijetms;7(4):639-646. DOI: 10.46647/ijetms.2023.v07i04.089