International Journal of Engineering Technology and Management Sciences

2023, Volume 7 Issue 5

Cyber Threat Detection Based On Artificial Neural Networks Using Event Profiles

AUTHOR(S)

Chakala Navya, G Upendra reddy

DOI: https://doi.org/10.46647/ijetms.2023.v07i05.001

ABSTRACT
Polyaniline has been the oldest among all the conducting polymers. The unique properties of conducting polymers not only provide great scope for their applications but also have led to the development of new models to explain their observed properties. Polyaniline has rapidly become the subject of considerable interest for physicists, chemists and material scientists. In this paper we have carried out the Scanning Electron Microscopy characteristics of Polyaniline thin films doped with different concentrations (15% & 30%) of the dopants like Potassium Bromide and Picric Acid. The films has been prepared by using Vacuum Evaporation Technique and then characterized for SEM studies by using Scanning Electron Microscopy unit. The SEM study reveals that the grain size increases with the increase in the concentration of the above said dopants which in turn increases the crystallinity of the material. This behavior ensures its application in the optoelectronic devices.

Page No: 1 - 10

References:

  1. S. Naseer, Y. Saleem, S. Khalid, M. K. Bashir, J. Han, M. M. Iqbal,
  2. K. Han, "Enhanced Network Anomaly Detection Based on Deep Neural Networks," IEEE Access, vol. 6, pp. 48231-48246, 2018.
  3. B. Zhang, G. Hu, Z. Zhou, Y. Zhang, P. Qiao, L. Chang, "Network Intrusion Detection Based on Directed Acyclic Graph and Belief Rule Base", ETRI Journal, vol. 39, no. 4, pp. 592-604, Aug. 2017
  4. W. Wang, Y. Sheng and J. Wang, "HAST-IDS: Learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection," IEEE Access, vol. 6, no. 99, pp. 1792-1806, 2018.
  5. M. K. Hussein, N. Bin Zainal and A. N. Jaber, "Data security analysis for DDoS defense of cloud based networks," 2015 IEEE StudentConferenceonResearchandDevelopment(SCOReD), Kuala Lumpur, 2015, pp. 305-310.
  6. S. Sandeep Sekharan, K. Kandasamy, "Profiling SIEM tools and correlation engines for security analytics," InProc.Int.Conf.Wireless Com., Signal Proce. and Net.(WiSPNET), 2017, pp. 717- 721.
  7. N.Hubballiand V.Suryanarayanan,‘‘False alarm minimization techniques in signature-based intrusion detection systems: A survey,’’ Comput. Commun., vol. 49, pp. 1-17, Aug. 2014.
  8. A. Naser, M. A. Majid, M. F. Zolkipli and S. Anwar, "Trusting cloud computing for personal files," 2014 International Conference onInformation and Communication Technology Convergence (ICTC), Busan, 2014, pp. 488-489.
  9. Y. Shen, E. Mariconti, P. Vervier, and Gianluca Stringhini, "Tiresias: Predicting Security Events Through Deep Learning," In Proc. ACMCCS18, Toronto, Canada, 2018, pp. 592-605.
  10. Kyle Soska and Nicolas Christin, "Automatically detecting vulnerable websites before they turn malicious,", In Proc. USENIXSecuritySymposium., San Diego, CA, USA, 2014, pp.625-640.
  11. K. Veeramachaneni, I. Arnaldo, V. Korrapati, C. Bassias, K. Li, "AI2: training a big data machine to defend," InProc.IEEEBigDataSecurityHPSCIDS, New York, NY, USA, 2016, pp. 49-54
  12. Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu and Ali A. Ghorbani, "A detailed analysis of the kdd cup 99 data set," In Proc. of theSecondIEEEInt.Conf.Comp.Int.forSec.andDef.App., pp. 53-58, 2009.
  13. I. Sharafaldin, A. H. Lashkari, A. A. Ghorbani, "Toward generating a new intrusion detection dataset and intrusion traffic characterization", Proc. Int. Conf. Inf. Syst. Secur. Privacy, pp. 108- 116, 2018.
  14. [online] Available: http://www.takakura.com/Kyoto_data/

  15. How to Cite This Article:
    Chakala Navya, G Upendra reddy . Cyber Threat Detection Based On Artificial Neural Networks Using Event Profiles . ijetms;7(5):1-10. DOI: 10.46647/ijetms.2023.v07i05.001