International Journal of Engineering Technology and Management Sciences

2023, Volume 7 Issue 5

Biostrategies for the removal of microplastics: A Review

AUTHOR(S)

Deepashree G, Prajwal PR, Hemalata MS, Shreya S, Sindhu CR, Sarina P Khabade

DOI: https://doi.org/10.46647/ijetms.2023.v07i05.019

ABSTRACT
Recent studies on plastic pollution have shown that microscopic plastic particles or microplastics are ubiquitous. Both abiotic and biotic components are affected by microplastics. There are several ways to get rid of microplastics, that include recycling, landfilling, incineration, and biodegradation. Biodegradation is still a widely used remediation technology due to its significant economic and environmental benefits. One or more bio-cultures, such as bacteria, mould, yeast, and algae, can be used for biodegradation. In this review, we look through the contributions of microorganisms in biodegradation and other biotechnological techniques to speed up the process.

Page No: 162 - 176

References:

Barnes D K, Galgani F, Thompson R C, Barlaz M (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1526): 1985–1998
Brandelli A, Wentz Brum LF, dos Santos JHZ (2017) Nanostructured bioactive compounds for ecological food packaging. Environ Chem Lett 15:193–204. https://doi.org/10.1007/ s10311-017-0621-7
Gumel AM, Annuar MSM, Chisti Y. Recent advances in the production, recovery and applications of polyhydroxyalkanoates. J Polym Environ. 2013;21(2):580–605. doi: 10.1007/s10924-012-0527 [CrossRef] [Google Scholar]
Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastic ever made. Sci Adv 3:e1700782. https://doi.org/10.1126/ sciadv.1700782
Danso D, Chow J, Streit WR. Plastics: environmental and biotechnological perspectives on microbial degradation. Appl Environ Microbiol. 2019 doi: 10.1128/AEM.01095-19. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Patel MM, Goyal BR, Bhadada SV, Bhatt JS, Amin AF. Getting into the Brain. CNS Drugs. 2009;23(1):35–58. doi: 10.2165/0023210-200923010-00003. [PubMed] [CrossRef] [Google Scholar]
Carr SA, Liu J, Tesoro AG. Transport and fate of microplastic particles in wastewater treatment plants. Water Res. 2016;91:174–182. doi: 10.1016/j.watres.2016.01.002. [PubMed] [CrossRef] [Google Scholar]
Tiwari N, Santhiya D, Sharma JG. Microbial remediation of micro-nano plastics: current knowledge and future trends. Environ Pollut. 2020;265:115044. doi: 10.1016/j.envpol.2020.115044. [PubMed] [CrossRef] [Google Scholar]
John J, Nandhini AR, Velayudhaperumal Chellam P, Sillanpää M. Microplastics in mangroves and coral reef ecosystems: a review. Environ Chem Lett. 2021 doi: 10.1007/s10311-021-01326-4. [PMC free article] [PubMed] [CrossRef
  Besseling E, Wegner A, Foekema EM, Van Den Heuvel-Greve MJ, Koelmans AA. Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L) Environ Sci Technol. 2013;47(1):593–600. doi: 10.1021/es302763x. [PubMed] [CrossRef] [Google Scholar]
Guzzetti E, Sureda A, Tejada S, Faggio C. Microplastic in marine organism: environmental and toxicological effects. Environ Toxicol Pharmacol. 2018;64:164–171. doi: 10.1016/j.etap.2018.10.009. [PubMed] [CrossRef] [Google Scholar]
Jenner LC, Rotchell JM, Bennett RT, Cowen M, Tentzeris V, Sadofsky LR. Detection of microplastics in human lung tissue using μFTIR spectroscopy. Sci Total Environ. 2022;831:154907. doi: 10.1016/j.scitotenv.2022.154907. [PubMed] [CrossRef] [Google Scholar]
Leslie HA, Van Velzen MJ, Brandsma SH, Vethaak AD, Garcia-Vallejo JJ, Lamoree MH. Discovery and quantification of plastic particle pollution in human blood. Environ Int. 2022;163:107199. doi: 10.1016/j.envint.2022.107199. [PubMed] [CrossRef] [Google Scholar]
Wright SL, Kelly FJ. Plastic and human health: a micro issue? Environ Sci Technol. 2017;51(12):6634–6647. doi: 10.1021/acs.est.7b00423. [PubMed] [CrossRef] [Google Scholar]
Revel M, Châtel A, Mouneyrac C. Micro (nano) plastics: a threat to human health? Curr Opin Environ Sci Health. 2018;1:17–23. doi: 10.1016/j.coesh.2017.10.003. [CrossRef] [Google Scholar]
Vethaak AD, Legler J. Microplastics and human health. Science. 2021;371(6530):672–674. doi: 10.1126/science.abe5041. [PubMed] [CrossRef] [Google Scholar]
Kay P, Hiscoe R, Moberley I, Bajic L, McKenna N. Wastewater treatment plants as a source of microplastics in river catchments. Environ Sci Pollut Res. 2018;25(20):20264–20267. doi: 10.1007/s11356-018-2070-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Chia RW, Lee JY, Kim H, Jang J. Microplastic pollution in soil and groundwater: a review. Environ Chem Lett. 2021;19(6):4211–4224. doi: 10.1007/s10311-021-01297-6. [CrossRef] [Google Scholar]
Wang B, Xu J, Gao J, Fu X, Han H, Li Z, Yao Q. Construction of an Escherichia coli strain to degrade phenol completely with two modified metabolic modules. J Hazard Mater. 2019;373:29–38. doi: 10.1016/j.jhazmat.2019.03.055. [PubMed] [CrossRef] [Google Scholar]
Verma R, Vinoda KS, Papireddy M, Gowda ANS. Toxic pollutants from plastic waste-a review. Procedia Environ Sci. 2016;35:701–708. doi: 10.1016/j.proenv.2016.07.069. [CrossRef] [Google Scholar]
Sanniyasi E, Gopal RK, Gunasekar DK, Raj PP. Biodegradation of low-density polyethylene (LDPE) sheet by microalga, Uronema Africanum Borge. Sci Rep. 2021;11(1):1–33. doi: 10.1038/s41598-021-96315-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Hirooka T, Nagase H, Uchida K, Hiroshige Y, Ehara Y, Nishikawa JI, Nishihara T, Miyamoto K, Hirata Z. Biodegradation of bisphenol A and disappearance of its estrogenic activity by the green alga Chlorella fusca var. vacuolata. Environ Toxicol Chem: Int J. 2005;24(8):1896–1901. doi: 10.1897/04-259R.1. [PubMed] [CrossRef] [Google Scholar]
Li R, Chen GZ, Tam NFY, Luan TG, Shin PK, Cheung SG, Liu Y. Toxicity of bisphenol A and its bioaccumulation and removal by a marine microalga Stephanodiscus hantzschii. Ecotoxicol Environ Saf. 2009;72(2):321–328. doi: 10.1016/j.ecoenv.2008.05.012. [PubMed] [CrossRef] [Google Scholar]
Ji MK, Kabra AN, Choi J, Hwang JH, Kim JR, Abou-Shanab RA, Oh YK, Jeon BH. Biodegradation of bisphenol A by the freshwater microalgae Chlamydomonas mexicana and Chlorella vulgaris. Ecol Eng. 2014;73:260–269. doi: 10.1016/j.ecoleng.2014.09.070. [CrossRef] [Google Scholar]
Bryant JA, Clemente TM, Viviani DA, Fong AA, Thomas KA, Kemp P, Karl DM, White AE, DeLong EF (2016) Diversity and activity of communities inhabiting plastic debris in the North Pacific Gyre. mSystems 1, 1–19. 10.1128/mSystems.00024-16 [PMC free article] [PubMed]
Debroas D, Mone A, Ter Halle A. Plastics in the North Atlantic garbage patch: a boat-microbe for hitchhikers and plastic degraders. Sci Total Environ. 2017;599–600:1222–1232. doi: 10.1016/j.scitotenv.2017.05.059. [PubMed] [CrossRef] [Google Scholar]
Moog D, Schmitt J, Senger J, Zarzycki J, Rexer KH, Linne U, Erb T, Maier UG. Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation. Microb Cell Fact. 2019;18(1):1–15. doi: 10.1186/s12934-019-1220-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Olicón-Hernández DR, González-López J, Aranda E. Overview on the biochemical potential of filamentous fungi to degrade pharmaceutical compounds. Front Microbiol. 2017;8:1792. doi: 10.3389/fmicb.2017.01792. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Khan S, Nadir S, Shah ZU, Shah AA, Karunarathna SC, Xu J, Hasan F. Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environ Pollut. 2017;225:469–480. doi: 10.1016/j.envpol.2017.03.012. [PubMed] [CrossRef] [Google Scholar]
Hari Krishna T; Maimoon S; Naveena Jyothi J; RaviSankar Reddy R; Pavani C; Narendra Kumar Raju K. "Using a Hybrid Model of Machine LearningAlgorithms for Efficient Cardiovascular illness Prediction". International Research Journal on Advanced Science Hub, 5, Issue 05S, 2023, 483-488. doi: 10.47392/irjash.2023.S064
Álvarez-Barragán J, Domínguez-Malfavón L, Vargas-Suárez M, González-Hernández R, Aguilar-Osorio G, Loza-Tavera H, Kivisaar M. Biodegradative Activities of Selected Environmental Fungi on a Polyester Polyurethane Varnish and Polyether Polyurethane Foams. Appl Environ Microbiol. 2016;82(17):5225–5235. doi: 10.1128/AEM.01344-16. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Kunlere IO, Fagade OE, Nwadike BI. Biodegradation of low density polyethylene (LDPE) by certain indigenous bacteria and fungi. Int J Environ Stud. 2019;76(3):428–440. doi: 10.1080/00207233.2019.1579586. [CrossRef] [Google Scholar]
Schwartz M, Perrot T, Aubert E, Dumarçay S, Favier F, Gérardin P, Gelhaye E. Molecular recognition of wood polyphenols by phase II detoxification enzymes of the white rot Trametes versicolorSci Rep. 2018;8(1):1–11. doi: 10.1038/s41598-018-26601-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Straub S, Hirsch PE, Burkhardt-Holm P. Biodegradable and petroleum-based microplastics do not differ in their ingestion and excretion but in their biological effects in a freshwater invertebrate Gammarus fossarumInt J Environ Res Public Health. 2017;14(7):774. doi: 10.3390/ijerph14070774. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M. Acidobacteria Actinobacteria Proteobacteria Verrucomicrobia. Appl Environ Microbiol. 2002;68(5):2391–2396. doi: 10.1128/AEM.68.5.2391-2396.2002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Barth M, Honak A, Oeser T, Wei R, Belisário-Ferrari MR, Then J, Schmidt J, Zimmermann W. A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Biotechnol J. 2016;11(8):1082–1087. doi: 10.1002/biot.201600008. [PubMed] [CrossRef] [Google Scholar]
Chen CC, Dai L, Ma L, Guo RT. Enzymatic degradation of plant biomass and synthetic polymers. Nat Rev Chem. 2020;4(3):114–126. doi: 10.1038/s41570-020-0163-6. [PubMed] [CrossRef] [Google Scholar]
Ashwin Rupak S A B; Janarthanan J; Kishore Kumar N; Harissh S; Sasi Kumar R. "ABAC Scheme on Electronic Health Records Using Hyperledger Fabric". International Research Journal on Advanced Science Hub, 5, Issue 05S, 2023, 489-495. doi: 10.47392/irjash.2023.S065
Pradeep Kumar Krishnan; Anfal Abdullah Reashid Al Araimi. "Clean Energy from Plastic: Production of Pyrolysis Oil from Plastic Waste". International Research Journal on Advanced Science Hub, 3, 11, 2021, 243-250. doi: 10.47392/irjash.2021.262
Gaurav Dhavala; Sunil Sheoran; Atharva Arya; Mrudul Vajpayee; Vipul Jain; Divya Shrivastava. "Well Being Assistance Chat Application". International Research Journal on Advanced Science Hub, 5, Issue 05S, 2023, 496-500. doi: 10.47392/irjash.2023.S066
Gómez-Méndez LD, Moreno-Bayona DA, Poutou-Pinales RA, Salcedo-Reyes JC, Pedroza-Rodríguez AM, Vargas A, Bogoya JM. Biodeterioration of plasma pretreated LDPE sheets by Pleurotus ostreatus. PLoS ONE. 2018;13(9):e0203786. doi: 10.1371/journal.pone.0203786. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Park SY, Kim CG. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. Chemosphere. 2019;222:527–533. doi: 10.1016/j.chemosphere.2019.01.159. [PubMed] [CrossRef] [Google Scholar]
Liu SY, Leung MML, Fang JKH, Chua SL. Engineering a microbial ‘trap and release’ mechanism for microplastics removal. Chem Eng J. 2021;404:127079. doi: 10.1016/j.cej.2020.127079. [CrossRef] [Google Scholar]
Kumar M, Xiong X, He M, Tsang DC, Gupta J, Khan E, Bolan NS. Microplastics as pollutants in agricultural soils. Environ Pollut. 2020;265:114980. doi: 10.1016/j.envpol.2020.114980. [PubMed] [CrossRef] [Google Scholar]
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. 2013;31(3):233–239. doi: 10.1038/nbt.2508. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Gaj T, Gersbach CA, Barbas CF., III ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31:397–405. doi: 10.1016/j.tibtech.2013.04.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Ali SS, Elsamahy T, Koutra E, Kornaros M, El-Sheekh M, Abdelkarim EA, Sun J. Degradation of conventional plastic wastes in the environment: a review on current status of knowledge and future perspectives of disposal. Sci Total Environ. 2021;771:144719. doi: 10.1016/j.scitotenv.2020.144719. [PubMed] [CrossRef] [Google Scholar]
de Oliveira TA, Barbosa R, Mesquita AB, Ferreira JH, de Carvalho LH, Alves TS. Fungal degradation of reprocessed PP/PBAT/thermoplastic starch blends. J Mater Res Technol. 2020;9(2):2338–2349. doi: 10.1016/j.jmrt.2019.12.065. [CrossRef] [Google Scholar] [Ref list]
Jeyakumar D, Chirsteen J, Doble M (2013). Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes. Bioresource Technology, 148: 78–85
Butnaru E, Darie-Niţă RN, Zaharescu T, Balaeş T, Tănase C, Hitruc G, Vasile C. Gamma irradiation assisted fungal degradation of the polypropylene/biomass composites. Radiat Phys Chem. 2016;125:134–144. doi: 10.1016/j.radphyschem.2016.04.003. [CrossRef] [Google Scholar] [Ref list]
Nowak B, Pajk J, Karcz J (2012) Biodegradation of pre-aged modified polyethylene films. In: Kazmiruk, V. (Ed.), Scanning Electron Microscopy. InTech. 10.5772/35128 [Ref list]

How to Cite This Article:
Deepashree G, Prajwal PR, Hemalata MS, Shreya S, Sindhu CR, Sarina P Khabade . Biostrategies for the removal of microplastics: A Review . ijetms;7(5):162-176. DOI: 10.46647/ijetms.2023.v07i05.019