Face Gender Classification by Using Improve Binary Particle Swarm Optimization and K-Nearest Neighbors
AUTHOR(S)
Minh Ly Duc, Dong Phan Tan
DOI: https://doi.org/10.46647/ijetms.2023.v07i05.031
ABSTRACT
This paper studies the application of the Binary particle swarm optimization (BPSO) algorithm to the optimal search for facial features and gender classification by K-Nearest Neighbors (K-NN) model. The results show that the accuracy and processing time of the model is much better than that of VGG16, VGG19, Resnet50, Senet50, Face Net, Open Face and FbDeep Face models. a large-scale GenderFace80K dataset with 80,000 facial images with gender annotation used in the research model.
Page No: 269 - 277
References:
- Mai T. V. Le T. D. Vinh T. H. and Tram A. N. T. (2021), Unsupervised gender prediction based on deep facial features, Zooming Innovation in Consumer Technologies Conference (ZINC), pp.1-4, DOI: 10.1109/ZINC52049.2021.9499250.
- Muhammad. N. F. and Adhi. P. (2019), Gender classification using fisher face and support vector machine on face image, Signal and Image Processing Letters,Vol. 1, No. 1, pp. 32-40, ISSN: 2714-6677, doi. Prefix 10.31763.
- Hui. C. L. and Bao. L. L. (2006), Multi-view Gender Classification Using Local Binary Patterns and Support Vector Machines, Lecture Notes in Computer Science (LNCS), Vol. 3972, pp. 202–209, ISBN: 3-540-34439-X.
- Seda. Ç. and Gökhan. Ş. (2016), Gender Prediction by Using Local Binary Pattern and K Nearest Neighbor and Discriminant Analysis Classifications, Signal Processing and Communication Application Conference (SIU), Vol. 24, pp.1-4, ISBN: 978-1-5090-1679-2, DOI: 10.1109/SIU.2016.7496201.
- Temilola. M. A. Matthias. O. O. Adebanjo. A. and Oluwatobi. A. A. (2018), Gender Classification based on Local Binary Pattern and K-Nearest Neighbour, Proceedings of the International Conference on Global & Emerging Trends (ICGET) 2018, pp. 74-78 ,ISSN:2645-2405.
- Tulasi. K. S. and Hemantha. K. K. (2019), Gender Classification Based on Face Images of Local Binary Pattern Using Support Vector Machine and Back Propagation Neural Networks, Advances in Modeling and Analysis B, Vol. 62, No. 1, pp. 31-35,ISSN: 1240-4543, https://doi.org/10.18280/ama_b.620105.
- Zheng. J. and Bao. L. L. (2009), Gender Classification Based on Support Vector Machine with Automatic Confidence, The 16th International Conference on Neural Information Processing, Vol. 5863, pp. 685–692, http://www.iconip09.org/index.html.
- Olasimbo. A. A. Sharifah. M. S. A. Wan. A. W. A. Salman. Y. and Saif. M. (2015), Soft Biometrics:: Gender Recognition From Unconstrained Face Images Using Local Feature Descriptor, Journal of Information and Communication Technology (JICT),Vol. 14, pp. 111-122,ISSN: 2180-3862.
- Bahar. H. and Cemal. K. (2015), Gender Recogni ition from Face Images Using PCA and LBP, 2015 9th International Conference on Electrical and Electronics Engineering (ELECO), Vol. 15755627, pp. 1258-1262, ISBN:978-6-0501-0737-1,DOI: 10.1109/ELECO.2015.7394470.
- Sajid. A. K. Muhammad. N. Nawazish. N. and Naveed. R. (2011), Efficient Gender Classification Methodology using DWT and PCA, 2011 IEEE 14th International Multitopic Conference, Vol. 12543030, pp.155-158, DOI: 10.1109/INMIC.2011.6151462.
- Sajid. A. K. Usman. A. and Naveed. R. A. (2011), Efficient Gender classification using Interlaced Derivative Pattern and Principal Component Analysis, Frontiers of Information Technology, pp. 270-274, ISBN: 978-0-7695-4625-4, DOI 10.1109/FIT.2011.57.
- Juan. E. T. and Claudio. A. P.(2013), Gender Classification Based on Fusion of Different Spatial Scale Features Selected by Mutual Information From Histogram of LBP, Intensity, and Shape, IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 3, pp. 487-499, ISSN: 1556-6013, Digital Object Identifier 10.1109/TIFS.2013.2242063.
- Swapnil. R. S. and Sudeep. T. (2018), Gender Classification from Face Images Using LBG Vector Quantization with Data Mining algorithms , 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Vol. 18617956, pp. 1-5, ISBN: 978-1-5386-5257-2, DOI: 10.1109/ICCUBEA.2018.8697784.
- Kamlesh. M. Li. Zh. Siew. Ch. N. Chee. P. L. and Ben. F.(2017), A Micro-GA Embedded PSO Feature Selection Approach to Intelligent Facial Emotion Recognition, IEEE TRANSACTIONS ON CYBERNETICS, VOL. 47, NO. 6, PP. 1496-1509.
- Bai. J. Xiaozheng. L. Geng S. Wei. Zh. Jiahui. L.and Yinzhe. X. (2020), Bio-Inspired Feature Selection: An Improved Binary Particle Swarm Optimization Approach, IEEE Access, Vol. 8, pp. 85989-86002, DOI: 10.1109/ACCESS.2020.2992752.
How to Cite This Article:
Minh Ly Duc, Dong Phan Tan
. Face Gender Classification by Using Improve Binary Particle Swarm Optimization and K-Nearest Neighbors
. ijetms;7(5):269-277. DOI: 10.46647/ijetms.2023.v07i05.031