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ABSTRACT
The quantum calculus emerged as a new type of unconventional calculus relevant to both
mathematics and physics. The study of quantum calculus or q-calculus has three hundred years of
history of development since the era of Euler and Bernoulli, and was appeared as one of the most
arduous techniques to use it in mathematics as well as physical science. At present, it is used in
diverged mathematical areas like number theory, orthogonal polynomials, basic hypergeometric
functions, etc. Furthermore, in order to get analytical approximate solutions to the ordinary as well
as partial differential equations, q-reduced differential technique and quantum separation of variable
technique are used in mathematics, Mechanics, and physics. In this paper, Laplace’s equation, a
well-known equation in both Physical and Mathematical sciences, has been solved extensively
based on the basics of 𝑞 − calculus, 𝑞 − transformation methods, and q-separation of variable
method. In addition, solutions to the Laplace’s equation as obtained by using different boundary
conditions are revisited and reviewed. Consequently, all the necessary basics of q-calculus are
displayed one by one, and thereafter, the process of finding its solution in view of quantum calculus
is described extensively. In order to find out the exact solutions the dimensionality of all the
parameters related to the problem has been described. As an essential outcome, it is also found that,
as q tends to 1, the solution takes the form as it is in general physics. Hence, this article presents a
review and extension that describe the solution to Laplace’s equation in view of both Leibnitz and
quantum calculus. Thus, it can add a pedagogical exercise for the students of both physical and
mathematical sciences to understand the usefulness of quantum calculus.
Keywords— quantum calculus, q-calculus, Laplace’s equation, 𝒒-transformation method, q-
separation of variable method.

1. Introduction
Quantum calculus is basically a different type of calculus provided a different perspective to solve
problems in science and engineering. It is a non-Newtonian calculus without limit and was
introduced a long back by L. Euler (1707-1783) and Carl G. Jacobi (1804-1851). The 𝑞 −calculus
deals with unconventional calculus and reduces to the classical calculus when uses limit and gives a
different analytical ambience. In addition, ‘𝑞-calculus’, being the calculus of finite differences, is
more straightforward, systematic and transparent. Though, in the first decade of nineteenth century,
Jackson studied it rigorously [1-3], it attained more attention due to its name after the emergence of
quantum mechanics by Albert Einstein in 1905. Jackson developed the q−derivative and q−integral
in a systematic way different from Leibnitz approach and hence, geometrical interpretation of the
q−calculus has been recognized through studies on quantum groups [4].
In recent decades, a number of problems has been studied in different fields of mathematics,
physics, statistics, and engineering using q-calculus [5-31]. As for example, a subsequent
development in 𝑞 -derivative and 𝑞 -integral can also be useful to analyze physical systems in a
different way as mentioned and described in Ref [9-12], partial q-difference equation is studied by



International Journal of Engineering Technology and Management Sciences
Website: ijetms.in Issue: 5 Volume No.7 September - October – 2023

DOI:10.46647/ijetms.2023.v07i05.066 ISSN: 2581-4621

@2023, IJETMS | Impact Factor Value: 5.672 | Page 523

different methods like separation of variables, the techniques of Lie symmetry, and q-integral
transforms [16-18]. In addition, q-calculus is applicable in the areas of ordinary fractional calculus,
basic hypergeometric functions, the theory of relativity, q−difference and q−integral equations and
in q−transform analysis [12, 18-23].
Nowadays, 𝑞 −calculus makes a bridge between mechanics and physics. Occasionally, maximum
scientists use q−calculus as a mathematical model are physicist and are using it in several modern
field of research like ‘quantum Field Theory, Newtonian quantum gravity, Special and General
relativity, Molecular and nuclear spectroscopy, and even in String theory [4, 32,33].
However, quantum calculus is popular today and may be considered as an extension of classical
calculus discovered by Issac Newton (1643-1727) and G. W. Leibniz (1646- 1716). In the latter
para, we shall discuss the primordial fact for its nomenclature. In fact, in q-calculus, the
ℎ −operator, and 𝑞 −operator, are defined by,

𝐷ℎ𝑓 𝑧 =
𝑓 𝑧 + ℎ − 𝑓(𝑧)

ℎ
… (1)

And,

𝐷𝑞𝑓 𝑧 =
𝑓 𝑞𝑧 − 𝑓(𝑧)

𝑞 − 1 𝑧
… (2)

for real or complex 𝑧 𝑎𝑛𝑑 ℎ > 0 . It gives us the exciting world of h−calculus and q−calculus,
respectively. Here ℎ stands for Planck’s constant and 𝑞 stands for quantum calculus and the well-

known relation is 𝑞 = 𝑒𝑖ℎ = 𝑒2𝜋𝑖ħ.
The current work is mainly motivated by a recent series of works [4,29,34-36]. This paper basically,
expands the boundaries of previous works by solving the Laplace’s equation with the help of
different methods in quantum calculus.

2. Quantum calculus preliminaries
Let us first summarize, the essential basics of q- calculus, needed to solve the Laplace’s equation as
we obtained in Ref. [32, 34-37].

Definition 1: In q-calculus, 𝑚 𝑞 =
𝑞𝑚−1

𝑞−1
for any positive integer m such that 𝑙𝑖𝑚

𝑞→1
𝑚 𝑞 = 𝑚 .

Hence, 0 𝑞 = 0 and 1 q=1.
Definition 2: If f t is an arbitrary function, its q-differential is 𝑑𝑞𝑓 𝑡 = 𝑓 𝑞𝑡 − 𝑓 𝑡 and the q-

derivative is 𝐷𝑞𝑓 𝑡 =
𝑑𝑞𝑓 𝑡

𝑑𝑞𝑡
=

𝑓 𝑞𝑡 −𝑓 𝑡

𝑞−1 𝑡
. It is also to be noted that 𝑙𝑖𝑚

𝑞→1
𝐷𝑞𝑓 𝑡 =

𝑑𝑓 𝑡

𝑑𝑡
. Thus,

𝐷𝑞𝑡
𝑚 =

𝑞𝑡 𝑚− 𝑡 𝑚

𝑞−1 𝑡
=

𝑞𝑚−1

𝑞−1
𝑡 𝑚−1 = 𝑚 𝑞𝑡

𝑚−1.

Definition 3: The Jackson q-integral (definite) is given as

0

𝑎
𝑓 𝑡 𝑑𝑞𝑡 = 1 − 𝑞 𝑎

𝑙=𝑜
∞ 𝑞𝑙𝑓(𝑞𝑙𝑎)∑∫ , Hence 0

𝑎
𝐷𝑞𝑓 𝑡 𝑑𝑞𝑡 = 𝑓 𝑎 − 𝑓(0)∫

Definition 4: The quantum factorial m q! is defined as

𝑚 𝑞! =
0 𝑞! = 1

𝑚=1
𝑚 𝑚 𝑞∏

Definition 5: Small q-exponential function 𝑒𝑞 𝑘𝑥 is represented as,

𝑒𝑞 𝑘𝑥 =

𝑙=0

∞
(𝑘𝑥)𝑙

𝑚 𝑞!
෍

Definition 6: 𝑒𝑞 𝑘𝑥 𝑑𝑞𝑥 =
1

𝑘
𝑒𝑞 𝑘𝑥 + 𝑐∫ where 𝑐 is a real constant.

Definition 7: Considering their Euler expression of small 𝑞 −exponential, the 𝑞-analogous sine and
cosine functions can be expressed as
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𝑠𝑖𝑛𝑞 𝑚𝑥 =
𝑒𝑞
𝑖𝑚𝑥 − 𝑒𝑞

−𝑖𝑚𝑥

2𝑖
𝑎𝑛𝑑 𝑐𝑜𝑠𝑞 𝑚𝑥 =

𝑒𝑞
𝑖𝑚𝑥 + 𝑒𝑞

−𝑖𝑚𝑥

2
And,

𝑠𝑖𝑛ℎ𝑞 𝑚𝑥 =
𝑒𝑞
𝑚𝑥 − 𝑒𝑞

−𝑚𝑥

2
𝑎𝑛𝑑 𝑐𝑜𝑠ℎ𝑞 𝑚𝑥 =

𝑒𝑞
𝑚𝑥 + 𝑒𝑞

−𝑚𝑥

2

Definition 8: The q-derivative of a function 𝑓 𝑥 is defined as,

𝐷𝑞𝑓 𝑥 =
𝑑𝑞𝑓 𝑥

𝑑𝑞𝑥
=
𝑓 𝑞𝑥 − 𝑓 𝑥

𝑞 − 1 𝑥
, 0 < 𝑞 < 1

And the partial 𝑞 −derivative of a function 𝑓 𝑥1, 𝑥, 𝑥3…𝑥𝑛 with respect to a variable 𝑥𝑖 is defined
as,

𝐷𝑞,𝑥𝑖𝑓 =
𝜕𝑞𝑓

𝜕𝑞𝑥𝑖
=
𝑓 𝑥1, 𝑥2, 𝑥3, …, 𝑞𝑥𝑖, …𝑥𝑛 − 𝑓 𝑥1, 𝑥2, 𝑥3…𝑥𝑛

(𝑞 − 1)𝑥𝑖
, 𝑥 ≠ 0, 0 < 𝑞 < 1

𝐷𝑞,𝑥𝑖𝑓 𝑥𝑖=0
=

𝜕𝑞𝑓

𝜕𝑞𝑥𝑖 𝑥𝑖=0

= lim
𝑧𝑖→0

𝜕𝑞𝑓

𝜕𝑞𝑥𝑖

Definition 9: The second order partial q-derivative of a function 𝑓 𝑥1, 𝑥, 𝑥3…𝑥𝑛 with respect to a
variable 𝑥𝑖 is defined as,
𝜕𝑞
2𝑓

𝜕𝑞𝑥𝑖
2 =

1

𝑞 − 1 𝑥𝑖

𝜕𝑞𝑓 𝑥1, 𝑥2, 𝑥3, …, 𝑞𝑥𝑖, …𝑥𝑛

𝜕𝑞𝑥𝑖
−
𝜕𝑞𝑓 𝑥1, 𝑥2, 𝑥3…𝑥𝑛

𝜕𝑞𝑥𝑖

=
𝑓 𝑥1, …, 𝑞

2𝑥𝑖, …𝑥𝑛 − 𝑓 𝑥1, …, 𝑞𝑥𝑖…𝑥𝑛
𝑞 − 1 𝑞𝑥𝑖

−
𝑓 𝑥1, …, 𝑞𝑥𝑖, …𝑥𝑛 − 𝑓 𝑥1, …𝑥𝑛

𝑞 − 1 𝑥𝑖
𝑞 − 1 𝑥𝑖

= 𝑓 𝑥1, 𝑥2, 𝑥3…, 𝑞
2𝑥𝑖, …𝑥𝑛 − 𝑞 + 1 𝑓 𝑥1, 𝑥2, 𝑥3, …, 𝑞𝑥𝑖, …𝑥𝑛 + 𝑞𝑉𝑞(𝑥1, 𝑥2, 𝑥3) 𝑞(𝑞 − 1)2𝑥𝑖

2

2.1 Reduced q-differential transform method
In order to solve partial differential equation, let us now define transformed function and q-
difference inverse transform function as described in [29, 35].
In order to solve partial differential equation, let us now define transformed function and q-
difference transform function as essential one. Suppose, all q-differentials of 𝑤(𝑥, 𝑡) exist in some
neighborhood 𝑡 = 𝜏, the transformed function,

𝑊𝑙 𝑥 =
1

𝑙 𝑞!

𝜕𝑞
𝑙 𝑤(𝑥, 𝑡)

𝜕𝑞𝑡
𝑙

𝑡=𝜏

… (3)
And the q-difference inverse transform of𝑊𝑙 𝑥 is defined as,

𝑤 𝑥, 𝑡 =

𝑙=0

∞

𝑊𝑙 𝑥 𝑡 − 𝜏 𝑙෍

… (4)
Thus substituting (3) to (4), we obtain,

𝑤 𝑥, 𝑡 =

𝑙=0

∞
1

𝑙 𝑞!

𝜕𝑞
𝑙 𝑤(𝑥, 𝑡)

𝜕𝑞𝑡
𝑙

𝑡=𝜏

𝑡 − 𝜏 𝑙෍

Now at 𝜏 = 0, if, 𝑓 𝑥, 𝑡 =
𝜕𝑞𝑤(𝑥,𝑡)

𝜕𝑞𝑥
, then from (3)

𝐹𝑙 𝑥 =
1

𝑙 𝑞!

𝜕𝑞
𝑙 𝑓 𝑥, 𝑡

𝜕𝑞𝑡
𝑙

𝑡=0

=
1

𝑙 𝑞!

𝜕𝑞
𝑙

𝜕𝑞𝑡
𝑙

𝜕𝑞𝑤 𝑥, 𝑡

𝜕𝑞𝑥
𝑡=0

=
1

𝑙 𝑞!

𝜕𝑞

𝜕𝑞𝑥

𝜕𝑞
𝑙

𝜕𝑞𝑡
𝑙
𝑤 𝑥, 𝑡

𝑡=0
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𝐹𝑙 𝑥 =
𝜕𝑞

𝜕𝑞𝑥

1

𝑙 𝑞!

𝜕𝑞
𝑙

𝜕𝑞𝑡
𝑙
𝑤 𝑥, 𝑡

𝑡=0

=
𝜕𝑞

𝜕𝑞𝑥
𝑊𝑙 𝑥

… (5)

Again, 𝜏 = 0, if, 𝑓 𝑥, 𝑡 =
𝜕𝑞
𝑘𝑤(𝑥,𝑡)

𝜕𝑞𝑥
𝑘 , then from (3),

𝐹𝑙 𝑥 =
1

𝑙 𝑞!

𝜕𝑞
𝑙 𝑤 𝑥, 𝑡

𝜕𝑞𝑡
𝑙

𝑡=0

=
1

𝑙 𝑞!

𝜕𝑞
𝑙

𝜕𝑞𝑡
𝑙

𝜕𝑞
𝑘𝑤 𝑥, 𝑡

𝜕𝑞𝑥
𝑘

𝑡=0

=
1

𝑙 𝑞!

𝜕𝑞
𝑙+𝑘

𝜕𝑞𝑡
𝑙+𝑘

𝑤 𝑥, 𝑡

𝑡=0

=
𝑙 + 𝑘 𝑞!

𝑙 𝑞!

1

𝑙 + 𝑘 𝑞!

𝜕𝑞
𝑙+𝑘

𝜕𝑞𝑡
𝑙+𝑘

𝑤 𝑥, 𝑡

𝑡=0

=
𝑙 + 𝑘 𝑞!

𝑙 𝑞!
𝑊𝑙+𝑚 𝑥

Thus,
𝐹𝑙 𝑥 = 𝑙 + 1 𝑞 𝑙 + 2 𝑞 𝑙 + 3 𝑞… 𝑙 + 𝑘 𝑞𝑊𝑙+𝑚 𝑥

… (6)

3. Solution to Laplace’s Equation in quantum calculus
Laplace’s equation is one of the ubiquitous equations in mathematical and physical science.
Specifically, to solve boundary value problems in electrostatics, it gives unique solution under
suitable boundary conditions and the solution must satisfy superposition principle. It can be
formulated in different coordinate system depending on the involvement of the geometry. However,
for convenience, we consider the 3-D cartesian coordinate for simplicity and the equation may be
written as,

∆V = ∇2𝑉 =

𝑖=1

3

𝑉𝑥𝑖𝑥𝑖 =෍

𝑖=1

3
𝜕2𝑉

𝜕𝑥𝑖
2෍ = 0 … (7)

The general solution can be obtained by separation of variable method considering the solution as
described in [39, 40]

𝑉(𝑥1, 𝑥2, 𝑥3) =

𝑖=1

3

𝑋𝑖(𝑥𝑖)ෑ … (8)

And the factorized solution can be written as,

𝑉𝑘1,𝑘2,𝑘3(𝑥1, 𝑥2, 𝑥3) =
𝑐𝑜𝑠 𝑘1𝑥1
𝑠𝑖𝑛 𝑘1𝑥1

𝑐𝑜𝑠 𝑘2𝑥2
𝑠𝑖𝑛 𝑘2𝑥2

exp (𝑘3𝑥3)

exp ( − 𝑘3𝑥3)
… (9)

Where, 𝑥1, 𝑥2, 𝑥3 are the three cartesian co-ordinates, and 𝑘1, 𝑘2, 𝑘3 are constant to be determined

from particular boundary conditions and 𝑘3 = 𝑘1
2 + 𝑘2

2 1 2
. It is possible to represent the last

factor of the right-hand side of (9) in terms of sinh and cosh form. It is also to be noted that, (9) is
the basic solution from which we can find out the actual or exact solution to the boundary value
problem.
On the other hand, in 2-D, if we consider the ‘separation constant’ 𝜅2 , Laplace’s equation reduces
to

−
1

𝑋1(𝑥1)

𝑑2𝑋1(𝑥1)

𝑑𝑥1
2 =

1

𝑋2(𝑥2)

𝑑2𝑋2(𝑥2)

𝑑𝑥2
2 = 𝜅2

… (10)
Then, we can obtain the factorial solution as mentioned in Table 1. Here in (10), it is observed that
the solution can have only one constant (let it be 𝜅) depending the nature of which solutions are to
be obtained in different factorized form as mentioned in Table 1.
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Table 1: 2-D solution (cartesian) of Laplace’s equation

𝜅2 = 0 𝜅2 ≤ 0, κ → jκ' 𝜅2 ≥ 𝑜

𝑥1
𝑐𝑜𝑠ℎκ'𝑥1
𝑠𝑖𝑛ℎκ'𝑥1

𝑐𝑜𝑠κ'𝑥2
𝑠𝑖𝑛κ'𝑥2

𝑐𝑜𝑠κ𝑥1
𝑠𝑖𝑛κ𝑥1

𝑐𝑜𝑠ℎκ𝑥2
𝑠𝑖𝑛ℎκ𝑥2

𝑥2
𝑐𝑜𝑠ℎκ'𝑥1
𝑠𝑖𝑛ℎκ'𝑥1

𝑠𝑖𝑛κ'𝑥2
𝑐𝑜𝑠κ'𝑥2

𝑠𝑖𝑛κ𝑥1
𝑐𝑜𝑠κ𝑥1

𝑐𝑜𝑠ℎκ𝑥2
𝑠𝑖𝑛ℎκ𝑥2

𝑥1𝑥2
𝑒−κ

'𝑥1

𝑒κ
'𝑥1

𝑠𝑖𝑛κ'𝑥2
𝑐𝑜𝑠κ'𝑥2

𝑠𝑖𝑛κ𝑥1
𝑐𝑜𝑠κ𝑥1

𝑒−κ𝑥2

𝑒κ𝑥2

A
constant

𝑒−κ
'𝑥1

𝑒κ
'𝑥1

𝑐𝑜𝑠κ'𝑥2
𝑠𝑖𝑛κ'𝑥2

𝑐𝑜𝑠κ𝑥1
𝑠𝑖𝑛κ'𝑥1

𝑒−κ𝑥2

𝑒κ𝑥2

But, if we consider 𝑉 as an analytic function such that both the real and imaginary part satisfy the 2-
D Laplace’s equation, then the real part of the solution in polar co-ordinate must be a logarithmic
function and can be written as in ref. [39,40],

𝑉𝑟𝑒𝑎𝑙 = 𝑙𝑜𝑔𝑟 … (11)

3.1 Solution to 2-D Laplace’s equation using reduced q-differential transform method
The 2-D Laplace’s equation in view of quantum calculus can be written as,

𝜕𝑞
2𝑉𝑞(𝑥1, 𝑥2)

𝜕𝑞𝑥22
=−

𝜕𝑞
2𝑉𝑞(𝑥1, 𝑥2)

𝜕𝑞𝑥12

… (12)
In order to solve the equation, let the boundary conditions are

𝑉𝑞 𝑥1, 0 = 𝑓 𝑘1𝑥1 , 𝑘1 ≠ 0

… (13)
𝜕𝑞𝑉𝑞 𝑥1, 0

𝜕𝑞𝑥2
= 0

… (14)
Here, 𝑘1 is constant to be determined from boundary conditions.
Thus, letting, 𝜏 = 0, remembering reduced q-differential transform method (as discussed in section
2.1), and rearranging (12), the x-part of the solution could be obtained. And (12) can be rewritten
as,

𝑝 + 1 𝑞 𝑝 + 2 𝑞𝑊𝑝+2 𝑥1 =−
𝜕𝑞
2𝑊𝑝 𝑥1

𝜕𝑞𝑥12

… (15)
Now, as 1 𝑞 = 1

𝑊0 𝑥1 = 𝑓 𝑘1𝑥1
… (16)

𝑊1 𝑥1 = 0
… (17)

As the solution to the Laplace’s equation will be unique one, we consider the function 𝑓 𝑘𝑥1 to be
periodic and single valued then 𝑓 𝑛 𝑥1 = 𝑘1

𝑛𝑓(𝑥1)

𝑊2 𝑥1 =
𝑊0

'' 𝑥1
1 𝑞 2 𝑞

=
𝑓''(𝑘1𝑥1)

1 𝑞 2 𝑞
=
𝑓(2)(𝑘1𝑥1)

2 𝑞!
=
𝑘1
2𝑓(𝑘1𝑥1)

2 𝑞!
=
𝑘1
2𝑊0 𝑥1
2 𝑞!
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… (18)
𝑊3 𝑥 = 0

… (19)

𝑊4 𝑥 =
𝑘1
4𝑊0 𝑥1
4 𝑞!

… (20)
𝑤5 𝑥 = 0

… (21)

𝑤6 𝑥 =
𝑘1
6𝑊0 𝑥1
6 𝑞!

… (22)
As the solution to the Laplace’s equation must obey the superposition theorem, Thus

𝑉𝑞 𝑥1, 𝑥2 =

𝑛=0

∞

𝑊𝑝 𝑥1 (𝑘2𝑥2)
𝑛෍

… (23)
Here, we introduce a second constant 𝑘2 to make 𝑘2𝑥2 dimensionless. Hence,

𝑉𝑞 𝑥1, 𝑥2 = 𝑊0 𝑥1 + 𝑘2𝑥2𝑊1 𝑥1 + 𝑘2
2𝑥2

2𝑊2 𝑥1 + 𝑘2
3𝑥2

3𝑊3 𝑥1 + 𝑘2
4𝑥2

4𝑊4 𝑥1 + 𝑘2
5𝑥2

5𝑊5 𝑥1
+ 𝑘2

6𝑥2
6𝑊5 𝑥1 …

𝑉𝑞 𝑥1, 𝑥2 = 𝑊0 𝑥1 1 +
𝑘2
2𝑥2

2

2 𝑞!
+
𝑘2
4𝑥2

4

4 𝑞!
+
𝑘2
6𝑥2

6

6 𝑞!
+ …

… (24)

𝑉𝑞 𝑥1, 𝑥2 = 𝑊0 𝑥1 𝑠𝑖𝑛ℎ𝑞(𝑘2𝑥2)

… (25)
Now the solution depends on the choice of 𝑊0 𝑥1 , Let it be, A 𝑒𝑞

𝑘1𝑥1 , Then the exact solution
becomes,

𝑉𝑞 𝑥1, 𝑥2 = 𝐴𝑒𝑞
𝑘1𝑥1𝑠𝑖𝑛ℎ𝑞(𝑘2𝑥2)

… (26)
Here, A is a constant to be determined from proper boundary conditions and (26) represents
similarity with one of the factorized solutions as displayed in the Table-1. Thus, considering the
actuality of the boundary value problem, we can find out different factorized solution using
quantum calculus. For example, if we use, 𝑉𝑞 𝑥1, 0 = 0, and 𝜕𝑞𝑉𝑞 𝑥1,0 𝜕𝑞𝑥2 =

𝑠𝑖𝑛𝑝𝑥 𝑝 , 𝑝 ≠ 0 ,in (13), and (14) respectively, then the solution will be,
𝑠𝑖𝑛𝑞𝑝𝑥1𝑠𝑖𝑛ℎ𝑞𝑝𝑡 𝑝2 see ref. [30].

3.2 Solution to 3-D Laplace’s equation using q-separation of variable method
In this section, we will solve 3-D Laplace’s equation using q-separation of variable method as
discussed in ref. [29]. In view of quantum calculus, three-dimensional Laplace’s equation can be
written as,

𝑖=1

3
𝜕𝑞
2𝑉𝑞

𝜕𝑞𝑥𝑖
2෍ = 0

… (27)

Here, 𝑉𝑞 = 𝑉𝑞(𝑥1, 𝑥2, 𝑥3) , remembering ‘Definition 9’, and substituting
𝜕𝑞
2𝑉𝑞

𝜕𝑞𝑥𝑖
2, we obtain
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𝑉𝑞 𝑞2𝑥1, 𝑥2, 𝑧 + 𝑉𝑞 𝑥1, 𝑞
2𝑥2, 𝑥3 + 𝑉𝑞 𝑥1, 𝑥2, 𝑞

2𝑥3
− 𝑞 + 1 𝑉𝑞 𝑞𝑥1, 𝑥2, 𝑥3 + 𝑉𝑞 𝑥1, 𝑞𝑥2, 𝑥3 + 𝑉𝑞 𝑥1, 𝑥2, 𝑞𝑥3

+3𝑞𝑉𝑞 𝑥1, 𝑥2, 𝑥3 = 0

… (28)
Introducing the method of separation of variables, considering 𝑉𝑞 𝑥1, 𝑥2, 𝑥3 =

𝑋1 𝑥1 𝑋2 𝑥2 𝑋3 𝑥3 and substituting all the similar forms of
𝑉 𝑞2𝑥1, 𝑥2, 𝑧 , 𝑉 𝑞2𝑥1, 𝑥2, 𝑧 , 𝑉 𝑥1, 𝑥2, 𝑞𝑥3 , we obtain,

𝑖=1

3
𝑋𝑖 𝑞

2𝑥𝑖
𝑋𝑖 𝑥𝑖

− 𝑞 + 1
𝑋𝑖 𝑞𝑥𝑖
𝑋𝑖 𝑥𝑖

+ 3𝑞෍ = 0

… (29)
In order to solve (28), intuitively we take the resulting function to be logarithmic Thus, we can say,

𝑋𝑖 𝑥𝑖 = 𝜁𝑙𝑜𝑔𝑞
𝑥𝑖

, 𝑋𝑖 𝑞𝑥𝑖 = 𝜁𝑙𝑜𝑔𝑞
𝑞𝑥𝑖

= 𝜁𝑋𝑖 𝑥𝑖 , 𝑎𝑛𝑑 𝑋𝑖 𝑞
2𝑥𝑖 = 𝜁2𝑋𝑖 𝑥𝑖 . Hence, after substitution of

these 𝑋𝑖 𝑥𝑖 , 𝑋𝑖 𝑞𝑥𝑖 , and 𝑋𝑖 𝑞
2𝑥𝑖 in (28), we obtain the characteristic equation as,

𝜁2 − 𝑞 + 1 𝜁 + 𝑞 = 0
… (30)

As, 𝑞, and 1 are the two roots of this equation, the quantum solutions of (27) are,

𝑉𝑞 =

𝑖=1

3

𝛽𝑖෍ 𝑞𝑙𝑜𝑔𝑞
𝑥𝑖

, 𝜁 = 𝑞

… (31)
And,

𝑉𝑞 =

𝑖=1

3

𝛽𝑖෍ 𝑙𝑜𝑔𝑞
𝑥𝑖 , 𝜁 = 1

… (32)
Where, 𝛽𝑖 , are constant to be find out from boundary conditions.
3.3 An alternate approach to solve Laplace’s Equation
In last two sections, we describe two different ways to solve 2-D and 3-D Laplace’s equation. This
equation can also be solved by using a different technique in quantum calculus. In view of quantum
calculus, (7), and (10), can be rewritten as,

𝑖=1

3
𝜕𝑞
2𝑉𝑞

𝜕𝑞𝑥𝑖
2෍ = 0 … (33)

−
1

𝑋1(𝑥1)

𝑑𝑞
2𝑋1(𝑥1)

𝑑𝑥1
2 =

1

𝑋2(𝑥2)

𝑑𝑞
2𝑋2(𝑥2)

𝑑𝑥2
2 = 𝜅2

… (34)
For simplicity, we consider (34) and assume the solutions are,

𝑋1(𝑥1) =

𝑟=0

∞

𝑎𝑛𝑥1
𝑛෍

𝑋2(𝑥2) =

𝑟=0

∞

𝑏𝑛𝑥2
𝑛෍

And after a few steps, we can easily find out any one of the factorized solutions as displayed in
Table 1.
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4. Analysis and applications
First of all, we investigate the solution to well-known Laplace’s equation using different techniques
as used in quantum calculus. As we said earlier, recently a number of physicists is using this plain-
dealing quantum calculus in several fields to find out and understand the solutions in a better way.
As a consequence, different techniques of 𝑞 −calculus are seeming to be important to solve 1-D, 2-
D, and 3-D differential equations as a basic theoretical requirement. Maximum of techniques, used
in q-calculus are usually dealt with series solution method. Another attribute of quantum solution is,
it reduces to the classical solution if and only if 𝑞 → 1. In addition, correctness of dimension of the
q-solutions is another major issue in physics while mathematician do not take it as an urgent one.
Therefore, in time of using new type of calculus in physics and engineering, dimensions of all the
parameters should be taken care of.
In conventional calculus, factorized solution of 3-D, and 2-D Laplace’s equations are represented in
(9) and as mentioned in (11) and Table 1. Furthermore, small q-exponential 𝑒𝑞 ±𝑘𝑥 → 𝑒𝑘𝑥 , when
𝑞 → 1 , and therefore, 𝑠𝑖𝑛𝑞 𝑚𝑥 → sin 𝑚𝑥 , 𝑐𝑜𝑠𝑞 𝑚𝑥 → cos 𝑚𝑥 𝑎𝑛𝑑 𝑠𝑖𝑛ℎ𝑞 𝑚𝑥 →

sinh 𝑚𝑥 , 𝑐𝑜𝑠ℎ𝑞)(𝑚𝑥) → cosh (𝑚𝑥) ,when 𝑞 → 1 . Therefore, all their corresponding quantum
solutions (26), (31), and (32) will reduces to their classical form when 𝑞 → 1.
Secondly, the dimensions, of 𝑥𝑖 '𝑠 are basically [L], hence, the dimensions of all 𝑘𝑖'𝑠 , 𝛼𝑖'𝑠, and 𝜅
are [𝐿]−1 . Hence all the exponentials, sine, cosine, sinh and cosh are dimensionless. Thus, there is
no issue regarding the dimensions of the solutions.

CONCLUSION
In this paper, we have made a brief review about the developments of quantum calculus in diverse
areas of physics, mathematics, and engineering. This work can be treated as a guidance to explore
the applicability of quantum calculus in solving 2-D, 3-D differential equations often we see in
physics and mathematics.
In this work, the quantum calculus is applied to solve 2-D, and 3-D Laplace’s equation. The
quantum solutions to the Laplace’s equation have been described as they obtained from three
different techniques. The validity of those solutions is also discussed by confirming the fact that
those solution reduces to their classical form in a particular limiting situation 𝑞 tends to 1, and then
the accurateness of the dimensionality of the obtained solutions has been proved. Moreover, the
main aim of this article is to show that, quantum calculus can be considered as a new pedagogical
tool in introductory mathematical physics course.
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