

International Journal of Engineering Technology and Management Sciences

Website: ijetms.in Issue: 3 Volume No.8May - June – 2024

DOI:10.46647/ijetms.2024.v08i03.019 ISSN: 2581-4621

@2024, IJETMS | Impact Factor Value: 5.672 | Page 161

IntelliDev: AI-Powered Command Line Tool

for Developers

Dr. B. Rama Mohan[1], Abhed Chainani[2], A. Krishna Kartheek[3], Ch. A. S.

Praneeth[4], Kaustubh Shakelli[5]
[1]Professor, Dept. of CSE, Hyderabad Institute of Technology and Management, Telangana
[2], [3], [4], [5]UG Students, Dept. of CSE, Hyderabad Institute of Technology and Management,

Telangana

Abstract— IntelliDev is a cutting-edge terminal tool designed specifically for developers, seamlessly

integrating advanced AI capabilities by harnessing the power of Language Models (LLMs). With a

strong focus on user accessibility, it features a user-friendly interface with predefined prompts

tailored for various AI-assisted tasks crucial to development. These tasks include conducting

thorough code reviews, automatically generating commit messages, and creating tests to enhance

code quality. IntelliDev promotes proactive development practices by simplifying coding workflows

without requiring extensive technical knowledge. It offers a streamlined and intuitive experience,

allowing developers to efficiently leverage AI while maintaining the confidentiality and integrity of

the development process.

Keywords— AI-powered tool, code reviews, command line interface, developer productivity,

language models (LLMs), software development.

INTRODUCTION

In the realm of software development and interaction with computer systems, the Command Line

Interface (CLI) serves as a powerful and essential tool. Unlike graphical user interfaces (GUIs) that

rely on visual elements such as icons and windows, the CLI embraces a text-based approach,

presenting users with a command prompt to input textual commands for performing various tasks.

This method of interaction provides a level of precision and efficiency highly favoured by developers

and power users. The CLI plays a pivotal role in multiple facets of software development, including

efficient code compilation and execution, version control, task automation, and scripting. Developers

utilize the CLI to compile source code into executable binaries, manage source code repositories

through version control systems, and automate repetitive tasks via build tools and scripting languages.

The CLI's capacity for customization and integration with Continuous Integration/Continuous

Deployment pipelines further enhances its utility in the development workflow.

Language Models (LLMs) represent a significant advancement in natural language processing (NLP)

and artificial intelligence (AI), enabling machines to comprehend, generate, and manipulate human

language. These models are trained on vast datasets, allowing them to learn the nuances of language

structure, grammar, context, and semantics. By leveraging neural network architectures like

transformers and mechanisms such as attention, LLMs can perform a wide array of tasks, from text

completion and summarization to language translation and conversational AI.

IntelliDev is conceived as a terminal tool that integrates the capabilities of LLMs to augment and

streamline various development tasks. By focusing on user-friendly interfaces and predefined

prompts, IntelliDev assists developers in performing code reviews, generating commit messages, and

creating tests, all while maintaining a secure and robust environment for AI interactions. This

International Journal of Engineering Technology and Management Sciences

Website: ijetms.in Issue: 3 Volume No.8May - June – 2024

DOI:10.46647/ijetms.2024.v08i03.019 ISSN: 2581-4621

@2024, IJETMS | Impact Factor Value: 5.672 | Page 162

innovative tool aims to simplify coding workflows, enhance productivity, and foster proactive

development practices without requiring developers to delve deeply into the intricacies of AI

technology.

LITERATURE SURVEY

1. Large Language Models for Software Engineering: A Systematic Literature Review - This

research explores how Large Language Models (LLMs) can improve software engineering (SE). It

analyses different LLM types, data preparation for LLMs in SE, and techniques to optimize and

evaluate them. Finally, it looks at real-world applications of LLMs in SE tasks. Overall, the paper

explores the potential of LLMs to revolutionize SE. [Ref 1]

2. A Survey on Machine Learning Techniques for Source Code Analysis - This study explores how

machine learning (ML) and deep learning (DL) are used in software engineering for tasks like code

completion and analysis. It analyses 479 studies (2011-2021) on 12 code analysis tasks. The findings

show a rise in ML/DL usage and identify common steps like model creation and data training used

in these tasks. [Ref 2]

3. Software Testing with Large Language Models: Survey, Landscape, and Vision - This paper

reviews how large language models (LLMs) are used in software testing. It analyses 102 studies and

explores how LLMs are used for different testing tasks, the types of LLMs used, and challenges and

benefits of this approach. The paper also details the performance of LLMs in generating unit test

cases and explores using LLMs to generate system-level test inputs. Overall, the paper explores the

potential of LLMs to improve software testing. [Ref 3]

4. Language Models for Code Completion: A Practical Evaluation – In this paper researchers

evaluated the real-world effectiveness of three code completion models (InCoder, UniXcoder,

CodeGP) by analysing a massive dataset (2 million completions) from over 1200 programmers across

12 programming languages. Using various metrics (acceptance rate, similarity scores), the study

offers a comprehensive picture of how well these models perform in real-world coding, providing

insights into their strengths, weaknesses, and effectiveness for different languages. [Ref 4]

EXISTING SYSTEMS

1. Warp - Warp is an AI-powered terminal emulator that enhances the command line experience.

Its AI assistant suggests commands, fixes errors, and translates natural language. Warp also offers an

IDE-like editing experience with multi-cursors, selection, and familiar key bindings. It stores

command history and allows creating reusable workflows ("blocks") that can be shared for

collaboration and streamlining development

2. Github Copilot - GitHub Copilot is an AI code completion tool that speeds up coding by

suggesting code in real-time. It understands context, works across languages, and can even generate

code based on descriptions. It also helps with error correction and provides documentation, all while

learning from developers to improve its suggestions.

3. DhiWise - DhiWise streamlines the mobile and web app development process by automatically

transforming design mock-ups into clean, well-structured code. This eliminates the need for

developers to write everything by hand, boosting their productivity. DhiWise achieves this through a

combination of functionalities: automation of repetitive tasks, generation of reusable code

components, and an integrated AI assistant named WiseGPT. WiseGPT personalizes code

suggestions based on the existing codebase, further ensuring code quality and efficiency. This

comprehensive approach saves developer’s valuable time while simultaneously improving the overall

quality of the code being produced.

PROBLEM STATEMENT

International Journal of Engineering Technology and Management Sciences

Website: ijetms.in Issue: 3 Volume No.8May - June – 2024

DOI:10.46647/ijetms.2024.v08i03.019 ISSN: 2581-4621

@2024, IJETMS | Impact Factor Value: 5.672 | Page 163

AI's potential to transform software development is held back by complex, developer-unfriendly

interfaces. This hinders the adoption of AI tools for tasks like code reviews and security, despite their

potential benefits. Moreover, security concerns arise when using AI with sensitive code. A user-

friendly tool that simplifies AI integration while prioritizing security and confidentiality is crucial to

bridge the gap between developers and AI, ultimately fostering a more accessible and secure future

for AI-powered development.

PROPOSED SYSTEM

For IntelliDev, creating a user-friendly and accessible AI development tool was paramount. That's

why we made two key choices: a familiar interface (CLI) and powerful Large Language Model

(LLM) integration.

 The CLI Advantage: Developers spend a significant amount of time within the terminal

environment. By opting for a CLI tool, IntelliDev seamlessly integrates into existing workflows

without requiring developers to learn a new interface. This familiarity translates to immediate comfort

and efficiency. Additionally, the CLI allows for quick interaction and execution of commands,

minimizing disruption to the development process. Most importantly, the CLI fosters a secure

environment, as sensitive code remains within the user's terminal, mitigating security concerns.

 The Power of LLMs: Large Language Models represent the cutting edge of AI technology for

understanding and responding to human language. By integrating the power of LLMs into IntelliDev,

we unlock a vast array of functionalities that directly benefit developers. LLMs can handle diverse

tasks, including generating code suggestions, creating test cases, and even offering code review

insights. These capabilities streamline development processes and free developers to focus on more

complex problem-solving. Furthermore, advancements in LLM technology are rapid. This ensures

that IntelliDev will continue to improve and offer even more powerful features as LLM capabilities

evolve.

In essence, the combination of a familiar CLI and advanced LLM integration empowers IntelliDev

to provide an accessible and effective AI assistant for developers. This approach prioritizes user-

friendliness, security, and core functionalities, ultimately aiming to streamline workflows and

empower developers to leverage the true potential of AI within their coding endeavours.

RESULTS

International Journal of Engineering Technology and Management Sciences

Website: ijetms.in Issue: 3 Volume No.8May - June – 2024

DOI:10.46647/ijetms.2024.v08i03.019 ISSN: 2581-4621

@2024, IJETMS | Impact Factor Value: 5.672 | Page 164

As shown in the above figure, IntelliDev simplifies AI integration for developers. Users can directly

submit prompts in the terminal and receive LLM-powered responses within the same interface.

International Journal of Engineering Technology and Management Sciences

Website: ijetms.in Issue: 3 Volume No.8May - June – 2024

DOI:10.46647/ijetms.2024.v08i03.019 ISSN: 2581-4621

@2024, IJETMS | Impact Factor Value: 5.672 | Page 165

The figure showcases IntelliDev's code review powered by an LLM. The model analyses your code

to identify areas for performance enhancement, ensure adherence to coding standards, and

recommend refactoring techniques.

CONCLUSION

IntelliDev incorporates advanced Large Language Models (LLMs) into familiar terminal workflows,

enhancing software development processes. This AI-driven assistant evaluates code for quality and

performance and integrates smoothly with existing terminal tools. Its modular architecture and

customizable workflows support a variety of projects, thereby helping developers create robust

software solutions more efficiently.

References

[1] HOU, X. et al. (2024). Large Language Models for Software Engineering: A Systematic

Literature Review. https://arxiv.org/pdf/2308.10620.

[2] SHARMA, T. et al. (2022) A Survey on Machine Learning Techniques for Source Code

Analysis. https://arxiv.org/pdf/2110.09610

[3] Junjie, W. et al. (2024) Software Testing with Large Language Models: Survey, Landscape, and

Vision. https://arxiv.org/pdf/2307.07221

[4] Izadi, M. et al. (2024) Language Models for Code Completion: A Practical Evaluation.

https://arxiv.org/ftp/arxiv/papers/2402/2402.16197.pdf

[5] Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T., Jiang, D.,

& Zhou, M. (2020, September 18). Codebert: A pre-trained model for programming and natural

languages. https://arxiv.org/abs/2002.08155

[6] Naser, S. et al. (2020) Rate-splitting multiple access: Unifying noma and SDMA in miso VLC

channels. https://arxiv.org/abs/2007.13560

[7] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,

Scott Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling and

synthesis. In The Eleventh International Conference on Learning Representations, 2023

[8] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020. A Transformer-

based Approach for Source Code Summarization. In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics. 4998–5007. https://doi.org/10.18653/v1/2020.acl-

main.449

https://arxiv.org/abs/2007.13560

