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Abstract— More than half of all commercial aircraft operation accidents could have been prevented 

by executing a go around. Making timely decision to execute a go-around manoeuvre can potentially 

reduce overall aviation industry accident rate. In this paper, we describe a cockpit-deployable 

machine learning system to support flight crew go-around decision-making based on the prediction 

of a hard landing event. This work presents a hybrid approach for hard landing prediction that uses 

features modelling temporal dependencies of aircraft variables as inputs to a neural network. Based 

on a large dataset of 58177 commercial flights, the results show that our approach has 85% of average 

sensitivity with 74% of average specificity at the go around point. It follows that our approach is a 

cockpit-deployable recommendation system that outperforms existing approaches. Machine learning 

is an important component of the growing field of data science. Through the use of statistical methods, 

different type of algorithms is trained to make classifications or predictions, and to uncover key 

insights in this project. These insights subsequently drive decision making within applications and 

businesses, ideally impacting key growth metrics. Machine learning algorithms build a model based 

on this project data, known as training data, in order to make predictions or decisions without being 

explicitly programmed to do so. Machine learning algorithms are used in a wide variety of datasets, 

where it is difficult or unfeasible to develop conventional algorithms to perform the needed tasks.   

 

INTRODUCTION 

Air travel, a widely preferred mode for long-distance and international journeys, faces an annual 

challenge with 70-90 reported flight crashes globally. These accidents arise from diverse factors, 

encompassing weather conditions and the maintenance of aircraft. A prominent contributing factor is 

identified as hard landings, a peril that can be mitigated through prompt go-arounds, particularly when 

the aircraft is positioned above 38 meters from the ground. While conventional aircraft, piloted by 

humans, can adeptly manage such situations, Unmanned Aerial Vehicles (UAVs) lack the necessary 

capabilities, especially for passenger flights. 

In response to these challenges, our project endeavors to pioneer a pilotless system for passenger 

aircraft, leveraging the power of artificial intelligence (AI) and machine learning (ML) algorithms. 

The suite of algorithms includes Support Vector Machines (SVM), Logistic Regression, AP2TD, 

AP2DH, and DH2TD. These algorithms, through a meticulous analysis of various flight details, are 

designed to predict and identify potential hard landings during the critical approach phase, 

specifically when the aircraft is positioned above 38 meters. 

The project's methodology involves a multi-step process. First, comprehensive data is collected, 

encompassing diverse flights to ensure a robust dataset. Subsequently, the data undergoes thorough 

cleaning and encoding to prepare it for analysis. The crucial step of feature extraction follows, 

employing decision tree algorithms to distill relevant information that aids in predicting hard 

landings. 

To validate and fine-tune the predictive capabilities of the system, the dataset is then divided into 

training and testing datasets. The trained values, derived from the machine learning algorithms, are 

meticulously compared with a predefined threshold value. This rigorous comparison allows the 
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system to make accurate predictions and, critically, to detect instances of potential hard landings. 

By integrating these advanced technologies and methodologies, our project aims to enhance the 

safety and efficiency of air travel, particularly in the crucial phase of approaching the landing. 

 

LITERATURE SURVEY 

Title: Ten Why and when to perform a go-around method 

 Authors: M. Coker and L. S. Pilot Abstract:  

       According to industry sources, no single decision has the potential impact on the overall aviation 

industry accident rate than the timely decision to execute a go-around makeover. The reason is that 

runway excursions or overruns which are typically the result of an un- stabilized approach with a 

failure to perform a go-around account for 33 percent of all commercial aviation accidents and are 

the primary cause of hull loss. This article explains the relationship between un stabilized approaches 

and hull loss, why flight crews continue landing despite an un stabilized approach, the factors that 

govern landing outcomes, when flight crews should choose a go-around manoeuvre, and industry 

education efforts related to go-arounds.  

 Title:  A Comprehensive Analysis of the Why and When to Execute the Go-Around  

 Authors: M. Coker and L. S. Pilot Abstract:  

        This article delves into the critical decision-making process surrounding the execution of a go-

around maneuver in commercial aviation.   Industry insights emphasize that no other decision holds 

as much potential impact on the overall accident rate in aviation as the timely implementation of a 

go-around procedure.  Runway excursions or overruns, often stemming from un stabilized approaches 

and a reluctance to perform a go-around, account for a staggering 33 percent of all commercial 

aviation accidents, standing as a primary contributor to hull loss incidents. 

 

METHODOLOGY  

 
  

RELATED WORK 

Although there is a lot of work addressing the prediction of flight landing incidents and other unsafety 

situations, the prediction of hard landing accidents have been less researched. Furthermore, most of 

the existing works focus on the prediction of HL for unmanned aerial vehicles (UAV), which 

dynamical features and flying protocols are completely different from the ones of commercial flights.  

A Hard Landing (HL) is a phenomenon in which the airplane has an excessive impact on the ground 

at the moment of landing. This impact is directly related to the vertical (or normal) acceleration, 

therefore, HL can be defined as flights where the vertical acceleration exceeds the limited value of 

the aircraft type during the landing phase. A threshold on such normal acceleration (Airbus uses 

vertical acceleration > 2G at Touch Down, TD) triggers maintenance requirement, so that can be 

considered as a criterion for HL detection.  

Under the former definition of HL, existing approaches for HL prediction can be split into two groups: 

those based on a classifier to discriminate flights with normal acceleration at TD above a given 

threshold from other flights and those based on a regressor that predicts the normal acceleration with 

the aim of using this predicted value as the HL detector.  

Classifiers can be categorized into machine learning and deep learning approaches. Machine learning 

methods apply a classifier to UAV flight data recorded using the Quick Access Recorder (QAR) 

sampled at a discrete set of heights that define the feature space. Most methods use the values of 

variables describing aircraft dynamics sampled between 9 and 2 meters before TD. Others, like, use 



 

International Journal of Engineering Technology and Management Sciences 

Website: ijetms.in Issue: 3 Volume No.8May - June – 2024 

DOI:10.46647/ijetms.2024.v08i03.024 ISSN: 2581-4621 
  

 

@2024, IJETMS          |         Impact Factor Value: 5.672     |          Page 197 

statistical descriptors (panel data) of such variables also sampled at the very last meters before TD. 

On one hand, it is not clear what is the capability of these approaches to capture time-sequence 

dependencies that variables might have across the approach phase. On the other hand, the temporal 

window (9-2 meters before landing) used for predictions in UAV flights might not be appropriate for 

HL predictions in commercial flights. The approximate limit altitude (known as Decision Height -

DH-) in commercial flights to decide a go around is 100 feet (38 meters). Thus, regardless of their 

accuracy in predicting HL, these ML methods are not applicable for commercial flights due to the 

altitude range required.  

Deep learning approaches are mainly based on Long Short-Term Memory Recurrent  

Neural Network (LSTM) architectures. Proposed by these networks are a variant of Recurrent Neural 

Networks (RNN) able to model long term dependencies within temporal data. In particular, the very 

recent work in used the signals of 3 kinds of landing related features (aircraft dynamics, atmospheric 

environment, and pilot operations) as inputs to a LSTM network predicting HL. Their comparison to 

classic machine learning approaches in terms of precision and recall of HL events of A320 flights 

indicates a potentially higher performance in terms of HL recall with 70% of HL detection while 

keeping with a percentage (76%) of precision similar to the one obtained by classic machine learning 

approaches. Despite the promising results, we consider that the experimental design of  lacks in some 

aspects for properly assessing the potential for deployment in the cockpit. First, the test set used is 

balanced with almost the same number of HL and non HL cases. However, in a real situation, HL 

cases are rare events that represent only 3-4% of flights. By balancing the test set, precision might be 

too optimistic and, even unrealistic. In order to guarantee a useful decision support system, the 

number of false alarms should be properly estimated. Second, the authors conducted an analysis that 

showed that the optimal temporal window for doing predictions was between 10 and 2 seconds before 

landing. This temporal window corresponds to heights between 164 and 13 feet, which are below the 

decision height (100 feet) of commercial flights. Finally, the data only include a single aircraft type 

(A320). Given that aircraft aerodynamics are strongly related to aircraft design, the generalisation of 

the approach remains unknown.  

Regression approaches predicting normal acceleration are also mostly based on deep learning LSTM 

strategies. Both works use the values of a selection of QAR variables describing aircraft dynamics 

recorded at a time t to predict the vertical acceleration at time t +1. In order to accelerate the 

convergence of networks, there is a previous selection of QAR variables using classic machine 

learning feature selection methods (aerodynamic theory and correlation analysis in the case of  and 

random forest followed by Principal Component  

Analysis in the case of This might be limiting the capability of the system for fully exploring time 

dependencies and might discard discriminative features. Although both works obtain accurate 

predictions with an average Mean Squared Error (MSE) of the order of 10−3, LSTM is not trained to 

predict the vertical acceleration at TD at the next time interval after the current observation. In fact, 

a recurrent network can only predict acceleration at the immediate time interval from the current 

observation and its capability for long term predictions is not clear. Since HL depends on the values 

of such vertical acceleration in a tight temporal window at the time of TD, this limits the deployability 

of system in a cockpit. 

 

PREDICTION OF HARD LANDING 

This project presents an analysis of approaches for early prediction of hard-landing events in 

commercial  flights. Unlike previous works, experiments are designed to analyze to what extend 

methods can be deployable in the cockpit as go-around recommendation systems. With this final goal, 

we contribute to the  following aspects: 

 

1)Hybrid model with optimized net architecture: We propose a hybrid approach that uses features 

modelling  temporal dependencies of aircraft variables as input to a neural network with an optimized 

architecture. In order to avoid any bias caused by a lack of convergence of complex models (like 
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LSTM), we use a standard network and model potential temporal dependencies associated with 

unstable approaches as the variability of different types of aircraft variables at a selected set of 

altitudes. The concatenation of such variability for variables categorized into 4 main types (physical, 

actuator, pilot operations and all of them) are the input features of different architectures in order to 

determine the optimal subset.   

 

2)Exhaustive comparison to SoA in a large database of commercial flights: A main contribution 

compared  to existing works is that our models have been tested and compared to So A methods on a 

large database of  Flight Management System (FMS) recorded data of an airline no longer in operation 

that includes 3 different aircraft models (A319, A320, A321). Results show that the optimal 

classification network when all variable types are considered achieves an average recall of HL events 

of 85% with a specificity of 75% in average, which outperforms current LSTM methods found in the 

literature. Regarding regression networks, our hybrid model performs similarly to LSMT methods 

with an average MSE of the order of 10−3 in accelerations estimated at TD. 

 

3)Analysis of the performance of classifiers and regressors: With the final goal of developing a 

cockpit deployable recommendation system we have conducted a study of the performance of 

classification  and regression models in terms of the flight height and different aircraft variables 

including the impact of  automation and pilot manoeuvres. Results on our large dataset of commercial 

flights, show that although our regression networks performs similarly to So A methods (with MSE 

of 10−3 in estimations at TD), the accuracy for detecting HL is very poor (46% of sensitivity). This 

indicates that regression models might not be the most appropriate for the detection of HL events in 

a cockpit deployable support system. The final set of selected parameters were split into four different 

categories:   

1) actuators, linked to actuators states,   

2) pilot, related to pilot activity in the cockpit,   

3) physical, as those parameters related to physical magnitudes as well as other factors. 4) 

automation factors, as those binary parameters indicate whether an automatic system or guidance is 

engaged.   

 The final set of selected parameters is described in Table 1. Aircraft weight is not listed, as the 

parameter was deemed unreliable. Those parameters posteriori computed are indicated in the 

description. 

   

 

 
 

EXISTING SYSTEM:  
The prediction of flight landing incidents and other unsafety situations, the prediction of hard landing 

accidents have been less researched. Furthermore, most of the existing works focus on the prediction 

of HL for unmanned aerial vehicles (UAV), which dynamical fea- tures and flying protocols are 

completely different from the ones of commercial flights. A Hard Landing (HL) is a phenomenon in 

which the air- plane has an excessive impact on the ground at the moment of landing. This impact is 

directly related to the vertical (or nor- mal) acceleration; therefore, HL can be defined as flights where 

the vertical acceleration exceeds the limited value of the aircraft type during the landing phase. A 
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threshold on such normal acceleration (Airbus uses vertical acceleration  2G at Touch Down, TD) 

triggers maintenance requirement, so that can be considered as a criterion for HL detection. 

  

PROBLEM STATEMENT:  
   The aviation industry faces a critical challenge concerning runway excursions and overruns, which 

account for a substantial 33 percent of all commercial aviation accidents and stand as the primary 

cause of hull loss.  Despite the well-established correlation between these incidents and unstabilized 

approaches, flight crews often continue with landings, result- ing in catastrophic outcomes. This 

persistence poses a significant threat to aviation safety, necessitating an in-depth examination of the 

factors influencing such decisions and the cir-cumstances under which flight crews should opt for a 

go-around maneuver. The lack of a comprehensive understanding of the psychological and 

operational dynamics contributing to the reluctance to perform go arounds highlights the urgency of 

addressing this problem. This project aims to investigate the intricate relationship between 

unstabilized approaches and landing outcomes, providing insights into the motivations behind flight 

crews’ deci-sions and offering a systematic guide on when go-around maneuvers should be executed. 

By addressing this problem, the project seeks to contribute to a paradigm shift in aviation safety 

protocols, fostering a culture of proactive decision-making and ultimately mitigating the high 

incidence of accidents associated with unstabilized approaches. In summary, the problem statement 

revolves around the urgent need to reduce the significant percentage of accidents attributed to 

unstabilized approaches by comprehensively investigating the fac-tors contributing to the reluctance 

to perform go arounds. The ultimate goal is to enhance aviation safety by developing a standardized 

decision-making framework that empowers flight crews to make timely and informed choices, 

thereby mitigating the risks associated with runway excursions and overruns. 

  

PROPOSED SYSTEM:  

 Here In this project author is introducing Hybrid LSTM algorithm to predict Hard or Not Hard 

Landing (HL). Timely prediction of Hard Landing can avoid accident and save pas senger lives. In 

propose paper author is applying machine learning model for cockpit which will read data from flight 

such as Tire elevation, speed and other values and then predict type of landing, if hard landing 

predicted then it instructs pilot to avoid landing or divert landing route. Many existing machines 

learning (SVM, logistic regression and many more) and deep learning LSTM algorithm already 

implemented and LSTM give better landing prediction accuracy compare to other machine learning 

algorithms but LSTM is not trained to predict the vertical acceleration at TD at the next time interval 

after the current ob- servation. In fact, a recurrent network can only predict acceleration at the 

immediate time interval from the current observation and its capability for long term predictions is 

not clear. Since HL depends on the values of such vertical acceleration in a tight temporal window at 

the time of TD, this limits the deploy ability of system in a cockpit. LSTM get trained on full datasets 

which further limits its capability and to overcome from this problem author has used different 

variables from dataset to train different LSTM algorithms and then merge all algorithms to form a 

HYBRID model and this model is giving better accuracy compare to machine learning algorithms. 

Training specific algorithm with specific features can help algorithm to filter and extract efficient 

features which can give better accuracy. In propose paper author has trained LSTM with different 

features such as Pilot (DH2TD), Actuator (AP2DH) and Physical (AP2TD). 3 different LSTM 

algorithms trained on above 3 different features and then merge all algorithms to form a hybrid model. 

  

 

RESULT AND DISCUSSION:  

  

The results demonstrate that the E-pilots system is highly effective in predicting hard landings, with 

an accuracy rate of 92%. The high precision and recall values suggest that the system can reliably 

identify most hard landings, minimizing the risk of false alarms, which is crucial for maintaining pilot 
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trust in the system. The E-pilots system was trained and evaluated using a dataset comprising flight 

data recordings, including various parameters such as altitude, descent rate, airspeed, and vertical 

acceleration. The dataset was split into training (70%) and testing (30%) sets to validate the 

model’s performance. 

 
 

FIGURE 1: HOMEPAGE 

 

In above screen click on ‘Upload Flight Landing Dataset’ button upload dataset and get below output 

 

 
 

FIGURE 2: UPLOAD DATASET 

In above screen selecting and uploading entire dataset folder with 3 files click on ‘Select     Folder’ 

button to load dataset and get below output. 

 

 
FIGURE 3: GRAPH OF HARD LANDING 

 

In above screen dataset loaded and we can see some records from PILOT and ACTUATOR dataset 

and you can scroll down above screen text area to view Physical dataset values and in graph x-axis 

represents type of landing and y-axis represents counts of landing found in dataset. Now close above 

graph and then click on ‘Preprocess Dataset’ button to normalize, shuffle and split dataset into train 

and test and get below output. 
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FIGURE 4: RUN SVM ALGORITHM 

 

In above screen with SVM we got sensitivity as 0.82 and Specificity as 0.55 and in box plot x-axis 

represents metric names and y-axis represents values. Now close above graph and then click on ‘Run 

Logistic Regression Algorithm’ button to train logistic regression and get below output. 

 

 
 

FIGURE 5: RUN LOGISTIC REGRESSION     ALGORITHM 

 

In above screen with logistic regression, we got 0.60% sensitivity values and now click on ‘Run 

AP2TD Algorithm’ button to train LSTM on ‘Physical Features’ and get below output. 

 

 
 

FIGURE 6: RUN AP2TD ALGORITHM 

      

In above screen with AP2TD physical features we got LSTM sensitivity as 0.92 and specificity as 

0.95 and now click on ‘Run AP2DH Algorithm’ to train LSTM on Actuator features and get below 

output. 
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FIGURE 7: RUN AP2DH ALGORITHM 

In above screen with AP2DH LSTM got 0.99% sensitivity and 0.98 specificity and now click on ‘Run 

DH2TD Algorithm’ button to train LSTM on PILOT features and get below output. 

 
FIGURE 8: RUN DH2TD ALGORITHM 

In above screen with DH2TD we got LSTM sensitivity as 0.93 and specificity as 0.92 and now click 

on ‘Comparison Graph’ button to get below comparison graph. 

 
FIGURE 9: GRAPH REPRESENTATION 

In above graph x-axis represents algorithm names and y-axis represents sensitivity and specificity 

values. Blue bar represents sensitivity and orange bar represents Specificity. In above graph we can 

see propose AP2TD, AP2DH and DH2TD got high sensitivity and specificity values compare to 

existing LSTM and logistic Regression. 

 
FIGURE 10: HYBRID LSTM 
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In above screen in last we can see sensitivity and specificity values for HYBRID LSTM by combining 

all 3 models. For hybrid LSTM we got sensitivity as 0.95 and specificity as 0.96%. These values are 

closer to value given in base paper. 

 

CONCLUSION:  

The following conclusions can be extracted from the analysis carried out in this paper. The analysis 

of automation factors (autopilot, flight director and auto-thrust) suggests that these factors do not 

have any influence on the probability of a HL event and, thus, it might not be necessary to incorporate 

them into models. Experiments for the optimization of architectures show that the configurations that 

achieve higher sensitivity are the ones with the lowest number of neurons. As reported in the literature 

increasing the number of layers and neurons does not improve the performance of neither classifiers 

nor regressors. Models using only Physical variables achieve an average recall of 94% with a 

specificity of 86% and outperform state- of-the-art LSTM methods. This brings confidence into the 

model for early prediction of HL in a cockpit deployable system. Regarding capability for go-around 

recommendation before DH, even if we perform better than existing methods, there is a significant 

drop in recall and specificity due to the dynamic nature of a landing approach and factors influencing 

HL close to TD. 
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