International Journal of Engineering Technology and Management Sciences

2023, Volume 7 Issue 4

Characterization of Rice Straw for Energy use in Grain Drying: A Comparative Study

AUTHOR(S)

Nagendra Singh, Mohd Mujeeb, Bhawesh Tiwari, Ajay Kumar, Paurush Kumar Kansykar

DOI: https://doi.org/10.46647/ijetms.2023.v07i04.019

ABSTRACT
The utilization of rice straw for energy in grain drying has garnered significant attention in rice-producing countries. However, its effectiveness as a fuel in grain drying is uncertain due to a lack of information on its fundamental properties. Rice straw is considered a low-quality feedstock due to its high ash content 10-17%, which is higher than that of wheat straw a ~3%, and its high silica content in the ash 75% for rice straw and 55% for wheat straw. Conversely, rice straw has relatively low total alkali content less than 15% Na2O and K2O in total ash, while wheat straw has less than 25% alkali content in ash. Based on its slagging index (Rs 0.04) and fouling index (RF 0.24), it is expected that rice straw will not pose significant operational issues or result in different emissions compared to wheat straw and rice husk under similar conditions. This paper aims to explore these properties and how they can be enhanced through pretreatment technologies. The focus is on two fundamental properties: calorific (heating) value and density, and the pretreatment technologies employed are sizing and compression. Existing literature indicates that both the physical and chemical properties of rice straw can be significantly improved through these pretreatment methods. The compressive strength and heating value of the biomass briquette are influenced by the hot-pressing temperature. Increasing the percentage of rice bran in the briquette enhances its compressive strength and heating value. Interestingly, the energy required for compressing the rice straw briquette can be minimized by adding a certain percentage of binder (such as rice bran, sawdust, or other biomass waste) to the crushed rice straw.

Page No: 117 - 129

References:

  1. Matsumura, Y., Minowa, T., & Yamamoto, H. (2005). Biomass and Bioenergy: Amount, Availability, and Potential Use of Rice Straw. DOI: N/A
  2. Biomass Waste Recycle Group. (1999). Status Quo and Problems for Recycling Biomass Waste in Japan. DOI: N/A
  3. Jenkins, B. M. (1998). Physical properties of biomass. In Biomass Handbook (Chap. 5.2). DOI: N/A
  4. Baxter, L. L. (1993). Ash deposition during biomass and coal combustion. DOI: N/A
  5. Baxter, L., Miles, T. R. Jr., Miles, T. R., & Jenkins, B. M. (1996). Alkali deposition found in biomass boilers. DOI: N/A
  6. Jenkins, B. M., & Ebeling, J. M. (1985). Correlation of physical and chemical properties of terrestrial biomass with conversion. DOI: N/A
  7. Purohit, P., Tripathi, A. K., & Kandpal, T. C. (2005). Energetics of coal substitution by co-firing. DOI: N/A
  8. Omori, H. (2006). Biomass boiler manual. In Proceedings of Seminar Reusing Biomass Waste in Industrial Boilers for Energy Recovery. DOI: N/A
  9. Loo, V. S. (2004a). Handbook of Biomass Combustion of Co-firing. DOI: N/A
  10. European Biomass Association. (2000). Retrieved from http://www.energyagency.at/(en)/publ
  11. Loo, V. S., & Koppejan, J. (2004b). Handbook of Biomass Combustion of Co-firing prepared by task 32 of the Implementing Agreement on Biomass under the auspices of the Int. Energy Agency; Tent University Press. DOI: N/A
  12. Livingston, W. R. (2005). A review of the recent experience in Britain with the co-firing of biomass with coal in large pulverized coal-fired boilers. DOI: N/A
  13. Bergman, P. C. A., Boersma, A. R., Zwart, R. W. R., & Kiel, J. H. A. (2005). Palletizing for biomasco-firing in existing coal-fired power stations. DOI: N/A
  14. Shii, C., Sheau, H. L., & Wen, C. (2009). Preparation and characterization of solid biomass fuel made from rice straw. DOI: N/A
  15. Wamukonya, L., & Jenkins, B. (1995). Durability relaxation of sawdust and wheat-straw briquettes as possible fuels for Kenya. Biomass and Bioenergy, 8, 175–179. DOI: 10.1016/0961-9534(94)00066-S
  16. Pravin T, M. Subramanian, R. Ranjith, Clarifying the phenomenon of Ultrasonic Assisted Electric discharge machining, “Journal of the Indian Chemical Society”, Volume 99, Issue 10, 2022, 100705, ISSN 0019-4522, Doi: 10.1016/j.jics.2022.100705
  17. R. Devi Priya, R. Sivaraj, Ajith Abraham, T. Pravin, P. Sivasankar and N. Anitha. "MultiObjective Particle Swarm Optimization Based Preprocessing of Multi-Class Extremely Imbalanced Datasets". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems Vol. 30, No. 05, pp. 735-755 (2022). Doi: 10.1142/S0218488522500209
  18. T. Pravin, C. Somu, R. Rajavel, M. Subramanian, P. Prince Reynold, Integrated Taguchi cum grey relational experimental analysis technique (GREAT) for optimization and material characterization of FSP surface composites on AA6061 aluminium alloys, Materials Today: Proceedings, Volume 33, Part 8, 2020, Pages 5156-5161, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2020.02.863.
  19. Shoeb Ahmed Syed; Steve Ales; Rajesh Kumar Behera; Kamalakanta Muduli. "Challenges, Opportunities and Analysis of the Machining Characteristics in hybrid Aluminium Composites (Al6061-SiC-Al2O3 ) Produced by Stir Casting Method". International Research Journal on Advanced Science Hub, 4, 08, 2022, 205-216. doi: 10.47392/irjash.2022.051
  20. Ashima Saxena; Preeti Chawla. "A Study on the Role of Demographic Variables on Online Payment in Delhi NCR". International Research Journal on Advanced Science Hub, 4, 08, 2022, 217-221. doi: 10.47392/irjash.2022.052
  21. Rajashekhar, V., Pravin, T., Thiruppathi, K.: A review on droplet deposition manufacturing a rapid prototyping technique. Int. J. Manuf. Technol. Manage. 33(5), 362–383 (2019) https://doi.org/10.1504/IJMTM.2019.103277
  22. V.S. Rajashekhar; T. Pravin; K. Thiruppathi , “Control of a snake robot with 3R joint mechanism”, International Journal of Mechanisms and Robotic Systems (IJMRS), Vol. 4, No. 3, 2018. Doi: 10.1504/IJMRS.2018.10017186
  23. Yaman, S., Şahan, M., Haykiri-açma, H., Şeşen, K., & Küçükbayrak, S. (2000). Production of fuel briquettes from olive refuse and paper mill waste. Fuel Processing Technology, 68, 23–31. DOI: 10.1016/S0378-3820(00)00120-7
  24. Li, Y., & Liu, H. (2000). High-pressure densification of wood residues to form an upgraded fuel. Biomass and Bioenergy, 19, 177–186. DOI: 10.1016/S0961-9534(00)00025-9
  25. Chin, O. C., & Siddiqui, K. M. (2000). Characteristics of some biomass briquettes prepared under modest die pressures. Biomass and Bioenergy, 18, 223–228. DOI: 10.1016/S0961-9534(99)00083-9
  26. Li, Y., Liu, H., & Zhang, O. (2001). High-pressure compaction of municipal solid waste to form densified fuel. Fuel Processing Technology, 74, 81–91. DOI: 10.1016/S0378-3820(01)00138-0
  27. Granada, E., López González, L. M., Míguez, J. L., & Moran, J. (2002). Fuel lignocellulosic briquettes, die design and products study. Renewable Energy, 27, 561–573. DOI: 10.1016/S0960-1481(01)00096-5
  28. Rhén, C., Gref, R., Sjöström, M., & Wästerlund, I. (2005). Effects of raw material moisture content, densification pressure and temperature on some properties of Norway spruce pellets. Fuel Processing Technology, 87, 6–11. DOI: 10.1016/j.fuproc.2004.08.003
  29. Mani, S., Tabil, L. G., & Sokhansanj, S. (2006). Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass and Bioenergy, 30, 648–654. DOI: 10.1016/j.biombioe.2005.11.004
  30. Marsh, R., Griffiths, A. J., Williams, K. P., & Wilcox, S. J. (2007). Physical and thermal properties of extruded refuse-derived fuel. Fuel Processing Technology, 88, 701–706. DOI: 10.1016/j.fuproc.2006.12.008
  31. Kaliyan, N., & Morey, R. V. (2009). Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy, 33, 337–359. DOI: 10.1016/j.biombioe.2008.08.006
  32. CNS-6947 P3041. (2002). Method of test for moisture content of pulpwood, Chinese National Standard.
  33. CNS-4713 O2018. (2005). Method of test for ethanol–toluene extractives in wood, Chinese National Standard.
  34. CNS-3084 O2016. (2004). Method of test for ash in wood, Chinese National Standard.
  35. ASTM D 2382. (2000). Standard method test for heat of combustion of hydrocarbon fuels by adiabatic bomb calorimeter, American Society for Testing and Materials.
  36. CNS-453 O2004. (2005). Wood — determination of compression properties, Chinese National Standard.
  37. Zhang, X., Xu, D., Xu, Z., & Cheng, Q. (2001). The effect of different treatment conditions on biomass binder preparation for lignite briquette. Fuel Processing Technology, 73, 185–196. DOI: 10.1016/S0378-3820(01)00131-8
  38. Bergström, D., Israelsson, S., Öhman, M., Dahlqvist, S. A., Gref, R., Boman, C., & Wästerlund, I. (2008). Effects of raw material particle size distribution on the characteristics of Scots pine sawdust fuel pellets. Fuel Processing Technology, 89, 1324–1329. DOI: 10.1016/j.fuproc.2008.07.002
  39. Pietsch, W. (1991). Size Enlargement by Agglomeration. John Wiley & Sons Ltd.

    How to Cite This Article:
    Nagendra Singh, Mohd Mujeeb, Bhawesh Tiwari, Ajay Kumar, Paurush Kumar Kansykar . ijetms;7(4):117-129. DOI: 10.46647/ijetms.2023.v07i04.019