International Journal of Engineering Technology and Management Sciences

2023, Volume 7 Issue 5

DEVELOPMENT OF HALFCELL POTENTIOMETER FOR MEASURING CORROSION

AUTHOR(S)

Rahul, Anand kumar

DOI: https://doi.org/10.46647/ijetms.2023.v07i05.010

ABSTRACT
Traditional corrosion measurement techniques often lack the required precision and sensitivity for real-time monitoring, hindering effective preventive measures. The newly developed half-cell potentiometer addresses these limitations by incorporating effective electrochemical principles and technology [1]. The device enables precise potential difference measurements between a reference electrode and a corroding metal surface, yielding valuable insights into corrosion rates and mechanisms. Innovation in corrosion measurement is critical for industries such as infrastructure, energy, and manufacturing, where the detrimental effects of corrosion lead to substantial economic losses and safety concerns. The newly developed half-cell potentiometer bridges the gap between traditional measurement techniques and contemporary demands for precision and efficiency [2]. By enabling timely and accurate corrosion monitoring, this advancement promises to revolutionize corrosion control strategies and contribute to the longevity and sustainability of various systems and structures [3].

Page No: 81 - 89

References:

    • Pour-Ghaz, M., Isgor, O. B., & Ghods, P. (2009). Quantitative interpretation of half-cell potential measurements in concrete structures. Journal of materials in civil engineering, 21(9), 467-475.
    • Krikstolaityte, V., Ding, R., Xia, E. C. H., & Lisak, G. (2020). Paper as sampling substrates and all-integrating platforms in potentiometric ion determination. TrAC Trends in Analytical Chemistry, 133, 116070.
    • Gu, P., & Beaudoin, J. J. (1998). Obtaining effective half-cell potential measurements in reinforced concrete structures (Vol. 18, pp. 1-4). Ottawa: Institute for Research in Construction, National Research Council of Canada.
    • Gholizadeh, A., Sardar, S., Francisco, K., Maher, A., Miskewitz, R., & Javanmard, M. (2020). Towards in-situ environmental monitoring: on-chip sample preparation and detection of lead in sediment samples using graphene oxide sensor. IEEE Sensors Journal, 20(22), 13787-13795.
    • Nakamura, E., Watanabe, H., Koga, H., Nakamura, M., & Ikawa, K. (2008, September). Half-cell potential measurements to assess corrosion risk of reinforcement steels in a PC bridge. In RILEM symposium on on site assessment of concrete, masonry and timber structures-SACoMaTiS (pp. 109-117).
    • Parthiban, T., Ravi, R., & Parthiban, G. T. (2006). Potential monitoring system for corrosion of steel in concrete. Advances in Engineering Software, 37(6), 375-381.
    • Shao, Y., Ying, Y., & Ping, J. (2020). Recent advances in solid-contact ion-selective electrodes: Functional materials, transduction mechanisms, and development trends. Chemical Society Reviews, 49(13), 4405-4465.
    • Ding, J., & Qin, W. (2020). Recent advances in potentiometric biosensors. TrAC Trends in Analytical Chemistry, 124, 115803.
    • Zhao, G., Liang, R., Wang, F., Ding, J., & Qin, W. (2019). An all-solid-state potentiometric microelectrode for detection of copper in coastal sediment pore water. Sensors and Actuators B: Chemical, 279, 369-373.
    • Assouli, B., Ballivy, G., & Rivard, P. (2008). Influence of environmental parameters on application of standard ASTM C876-91: half-cell potential measurements. Corrosion Engineering, Science and Technology, 43(1), 93-96.
    • Woźny, P., & Chudy, F. (2020). Linear-time geometric algorithm for evaluating Bézier curves. Computer-Aided Design, 118, 102760.
    • Kurdekar, A. D., Avinash Chunduri, L. A., Manohar, C. S., Haleyurgirisetty, M. K., Hewlett, I. K., & Venkataramaniah, K. (2018). Streptavidin-conjugated gold nanoclusters as ultrasensitive fluorescent sensors for early diagnosis of HIV infection. Science Advances, 4(11), eaar6280.
    • Mahure, N., Pathak, R., Vyas, S., Sharma, P., & Gupta, S. (2013). Corrosion Monitoring Of Reinforcement in Underground Galleries of Hydro Electric Project. Int. Journal of Engineering Research and Applications, 3, 1087-1090.
    • Wang, C., Yuan, H., Duan, Z., & Xiao, D. (2017). Integrated multi-ISE arrays with improved sensitivity, accuracy and precision. Scientific reports, 7(1), 44771.
    • Sun, L., Sun, C., & Sun, X. (2016). Screening highly selective ionophores for heavy metal ion-selective electrodes and potentiometric sensors. Electrochimica Acta, 220, 690-698.
    • Nayak, C. B., & Thakare, S. B. (2017). Investigation of corrosion status in elevated water tank by using nondestructive techniques in Baramati region. In International conference on construction real estate, infrastructure and project management, NICMAR, Pune (pp. 1-17).
    • Sarkar, S., Lai, S. C., & Lemay, S. G. (2016). Unconventional electrochemistry in micro-/nanofluidic systems. Micromachines, 7(5), 81.
    • Liang, R., Chen, L., & Qin, W. (2015). Potentiometric detection of chemical vapors using molecularly imprinted polymers as receptors. Scientific reports, 5(1), 12462.
    • Liang, R., Wang, Q., & Qin, W. (2015). Highly sensitive potentiometric sensor for detection of mercury in Cl−-rich samples. Sensors and Actuators B: Chemical, 208, 267-272.
    • Dineshkumar, R., Harikaran, C., & Veerapandi, P. (2020). Corrosion Assessment in Reinforced Concrete Elements using Half-Cell Potentiometer–A Review. measurement, 9, 12.
    • Silva, N. F., Magalhães, J. M., Oliva-Teles, M. T., & Delerue-Matos, C. (2015). A potentiometric magnetic immunoassay for rapid detection of Salmonella typhimurium. Analytical Methods, 7(9), 4008-4011.
    • Kofler, J., Nau, S., & List-Kratochvil, E. J. (2015). A paper based, all organic, reference-electrode-free ion sensing platform. Journal of Materials Chemistry B, 3(25), 5095-5102.
    • Yin, T., & Qin, W. (2013). Applications of nanomaterials in potentiometric sensors. TrAC Trends in Analytical Chemistry, 51, 79-86.
    • Shweta Y. Amrutkar; Aarti P. More; Mhaske S. T.. "Synthesis of anticorrosive and flame-retardant coating based on turmeric (Curcuma longa) and magnesium hydroxide". International Research Journal on Advanced Science Hub, 03, Special Issue ICOST 2S, 2021, 35-45. doi: 10.47392/irjash.2021.037
    • Ding, J., & Qin, W. (2013). Potentiometric sensing of nuclease activities and oxidative damage of single-stranded DNA using a polycation-sensitive membrane electrode. Biosensors and Bioelectronics, 47, 559-565.
    • Herzog, G. (2015). Recent developments in electrochemistry at the interface between two immiscible electrolyte solutions for ion sensing. Analyst, 140(12), 3888-3896.
    • Park, J., Meissner, R., Ducloux, O., Renaud, P., & Fujita, H. (2012). A calcium ion-selective electrode array for monitoring the activity of HepG2/C3As in a microchannel. Sensors and Actuators B: Chemical, 174, 473-477.
    • Lee, E., Jeong, E., & Jeon, S. (2012). A potentiometric sensor of silver ions based on the Schiff base of diphenol. Journal of Solid-State Electrochemistry, 16, 2591-2596.
    • Bühlmann, P., & Chen, L. D. (2012). Ion-selective electrodes with ionophore-doped sensing membranes. Supramolecular Chemistry: From Molecules to Nanomaterials, 5, 2539.
    • Vipul Kumar Mishra; Rahul Saini; Naveen kumar. "A Review on Applications of Superhydrophobic Coatings". International Research Journal on Advanced Science Hub, 3, 3, 2021, 43-55. doi: 10.47392/irjash.2021.096
    • MOHAMMED SAFIUDDIN; Mohammed Ahmed Hussain. "Strength Comparison of Bamboo and Steel Reinforcement in Mud Concrete". International Research Journal on Advanced Science Hub, 03, Special Issue ICARD-2021 3S, 2021, 86-91. doi: 10.47392/irjash.2021.071
    • Huang, M. R., Guo-Li, G. U., Feng-Ying, S. H. I., & Xin-Gui, L. I. (2012). Development of potentiometric lead ion sensors based on ionophores bearing oxygen/sulfur-containing functional groups. Chinese Journal of Analytical Chemistry, 40(1), 50-58.
    • Hua, H., Liao, Z., Wu, X., & Chen, Y. (2021). A Bezier based state calibrating method for low-cost potentiometer with inherent nonlinearity. Measurement, 178, 109325.
    • Freitas, B., Silva, M., Carvalho, Ó., Renjewski, D., Fonseca, J., Flores, P., & Espregueira-Mendes, J. (2019, February). Design, modelling, and control of an active weight-bearing knee exoskeleton with a series elastic actuator. In 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG) (pp. 1-4). IEEE.
    • Pearson, R. G. (1995). The HSAB principle—more quantitative aspects. Inorganic a Chimica Acta, 240(1-2), 93-98.


    How to Cite This Article:
    Rahul, Anand kumar . DEVELOPMENT OF HALFCELL POTENTIOMETER FOR MEASURING CORROSION . ijetms;7(5):81-89. DOI: 10.46647/ijetms.2023.v07i05.010