2023, Volume 7 Issue 4
Some Sub-Classes of Harmonic Univalent functions
AUTHOR(S)
N.Sri Lakshmi Sudha Rani
DOI: https://doi.org/10.46647/ijetms.2023.v07i04.013
ABSTRACT
Complex Analysis is branch of Geometric function theory. Geometric function theory concerned with interplay between the geometric properties of the image domain and analytic properties of the mapping functions. Some properties of analytic functions are exclusive and do not extend to more general harmonic mappings. In this paper we study the some subclasses of univalent harmonic functions like Coefficient Bounds, Distortion results and Convolution of Two functions.
Page No: 60 - 67
References:
[1] P. L. Duren, Univalent Functions, vol. 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
[2] M. I. S. Robertson, “On the theory of univalent functions,” Annals of Mathematics. Second Series, vol. 37, no. 2, pp. 374–408, 1936.
[3] A.G. Alanoush, Subclass of harmonic univalent functions associated with the generalized Mittag-Leffler type functions, arXiv:1901.08454v1 [math.CV] 24 Jan 2019.
[4] A.K. Al-khafaji, W.G. Atshan, S.S. Abed, On the Generalization of a Class of Harmonic Univalent Functions Defined by Differential Operator, 312(6) (2018), 1–9.
[5] O. Altintas, Ozkan, H.M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Letters, 13 (2000), 63-67.
[6] Y. Avci, E. Zlotkiewicz, On harmonic univalent mappings,Ann. Univ. Marie Curie-Sklodowska Sect. A, 44 (1990), 1–7.
[7] J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A.I, 9 (1984) ,3–25.
[8] K.K. Dixit, S. Porwal, On a subclass of harmonic unnivalent functions, Journal of inequalities in pure and applied mathematics, 10(27) (2009), 1–9.
[9] W. Hengartner, G. Schober, Univalent harmonic functions, Trans. Amer. Math. Soc., 299(1) (1987), 1-31.
[10] Z.J. Jakubowski, W. Majchrzak, K. Skalska, Harmonic mappings with a positive real part, Materialy Konferencji z Teorii Zagadnien Ekstremalnych Lodz, 14 (1993), 17-24.
[11] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), no. 10, 689–692. https://doi.org/10.1090/ S0002-9904-1936-06397-4
11] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3–25. https://doi.org/10.5186/aasfm.1984.0905
[12] Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics, 156, Cambridge University Press, Cambridge, 2004. https://doi.org/10.1017/ CBO9780511546600
[13] I. Hotta and A. Michalski, Locally one-to-one harmonic functions with starlike analytic part, Bull. Soc. Sci. Lett. L´od´z S´er. Rech. D´eform. 64 (2014), no. 2,
19–27.
[14] D. Klimek-Sm¸et and A. Michalski, Univalent anti-analytic perturbations of the identity in the unit disc, Sci. Bull. Che lm 1 (2006), 67–76.
[15] Univalent anti-analytic perturbations of convex analytic mappings in the unit disc, Ann. Univ. Mariae Curie-Sk lodowska Sect. A 61 (2007), 39–49.
[16] M. Zhu and X. Huang, The distortion theorems for harmonic mappings with analytic parts convex or starlike functions of order β, J. Math. (2015), Art. ID 460191, 1–6. https://doi.org/10.1155/2015/460191
[17] S. Kanas and D. Klimek-Sm¸et, Harmonic mappings related to functions with bounded boundary rotation and norm of the pre-Schwarzian derivative, Bull. Korean Math. Soc. 51 (2014), no. 3, 803–812. https://doi.org/10.4134/BKMS.2014.51.3.803
[18] W.G. Atshan and E.H.Abd, on Harmonic Univalent functions defined by Integral convolution, European Journal of Scientific Research, 136, No.2,(2015), 114-121.
[19] K.K. Dixit et.al, On a subclass of Harmonic Univalent function defined by convolution and integral convolution, Inter. J. Pure and Appl. Math., 69, No.3, (2011), 255-264.
[20] A. Y. Lashin, On a certain subclass of star like functions with negative coefficients, J. Ineq. Pure Appl. Math., 10(2), 1-8, (2009).
How to Cite This Article:
N.Sri Lakshmi Sudha Rani
. ijetms;7(3):60-67. DOI: 10.46647/ijetms.2023.v07i04.013